Philip Stephens

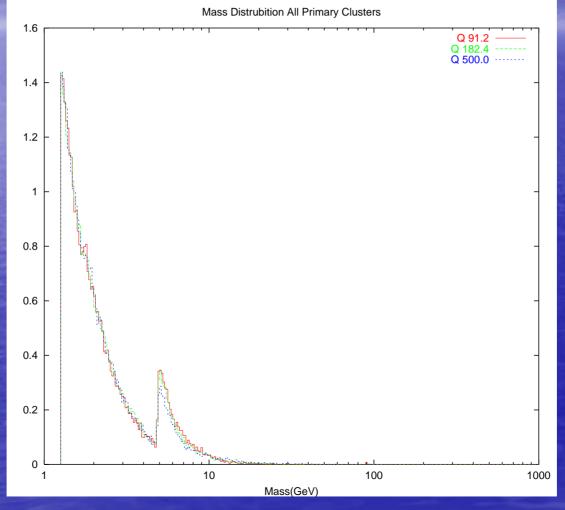
Cambridge University Cavendish Laboratory

Herwig++ Cluster Hadronization

For the Herwig++ team: Stefan Gieseke, PS, Bryan Webber (Cambridge) Mike Seymour (Manchester) Alberto Ribon (CERN)

Outline

Non-Perturbative Splitting Primary Cluster Formation Cluster Fission Light Clusters Cluster Decays - Fortran Herwig – Kupco Method - New method for Herwig++


Non-Perturbative Splitting • Shower produces partons at scale Q_0 Gluons are given an effective mass M_a Quarks are produced using an isotropic two body decay $g \rightarrow q \overline{q}$ Available flavours dictated by M_a • Weight of flavour $q = Pwt_{q}$

Primary Cluster Formation

- Primary Clusters are formed by combining the colour connected partners into a cluster.
- In baryon violating events, a cluster may be made of a quark and a diquark (or anti-quark anti-diquark)

 Cluster Mass distribution independent of CM energy (colour preconfinement)

Primary Cluster Mass Distribution

MC Workshop for LHC

Cluster Fission

 Clusters composed of flavours i and j whose mass exceed the constraint: M^P > C^P + (m_i+m_i)^P

are fissioned.

-M is the mass of the cluster

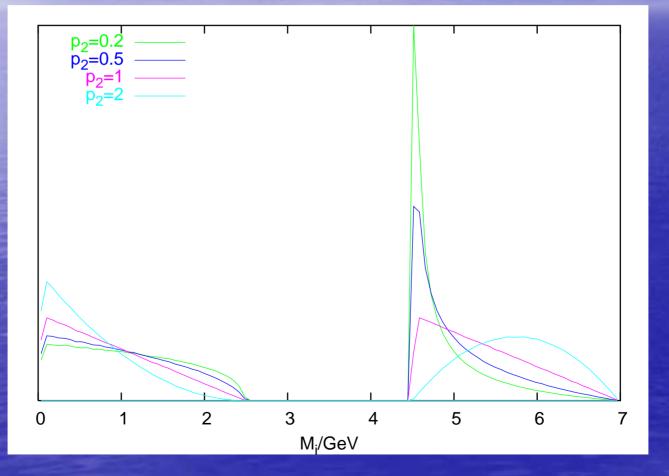
– *C* and *P* are parameters

 First a new flavour k is drawn from u,d and s flavours.

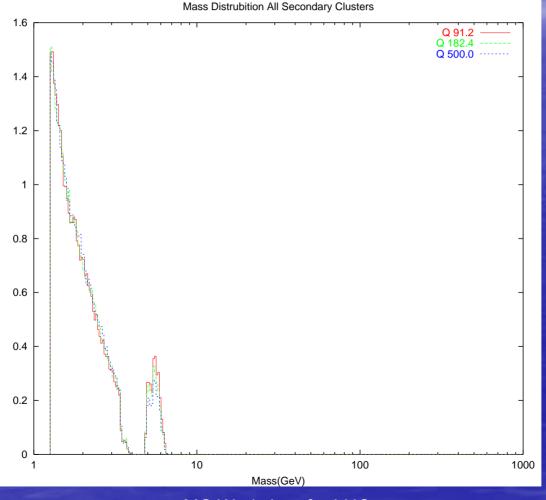
• This leads to a decay of $M_{ij} \rightarrow M_{ik} + M_{kj}$

Cluster Fission ... continued(1)

 First there is a check, if M_{ij} < m_i+m_j+2m_k then do not fission. (mostly in b clusters)
 There are two different mass distributions


Parton Shower Distribution Beam Remnant Distribution

• $M_{ik} = m_i + (M_{ij} - m_i - m_j)r^{1/x}$ •*r* is a random number [0,1] •*x* is a parameter, PSPLT(1) for *i* =*udsc*, PSPLT(2) for *i*=*b*


• $M_{ik} = m_i + m_k - \log(r)/b$ •b=2/y•r is a random number $[r_{min}, 1-r_{min}]$

• r_{min} is exp(-b($M_{ij} - m_i - m_j - 2m_k$))

Cluster Fission ... continued(2)

Cluster Fission ... continued(3)

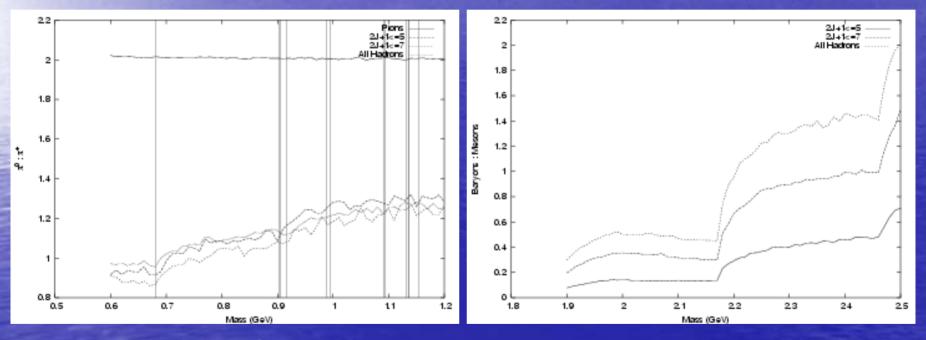
Cluster Fission ... continued(4)

- Sometimes the new cluster mass is not sufficient to produce the lightest pair of hadrons
 - Force the light cluster to set its mass to exactly that of lightest hadron (of flavour *i*,*j*), then do $1 \rightarrow 1$ decay into that hadron.
 - If there isn't enough phase space for this force both clusters to decay directly into hadrons (like a premature cluster decay)
 - If this still isn't possible, throw out the event.
- Decays are all $1 \rightarrow 2$ isotropic decays

Light Clusters

- If a cluster didn't fission, then make sure it is heavy enough to decay into two hadrons
 - If this isn't possible, then decay into one
 - Reshuffle 4-momentum with a nearby cluster
 - Once a partner is found, force the light cluster to decay $1 \rightarrow 1$ into its lightest hadron.

Cluster Decays

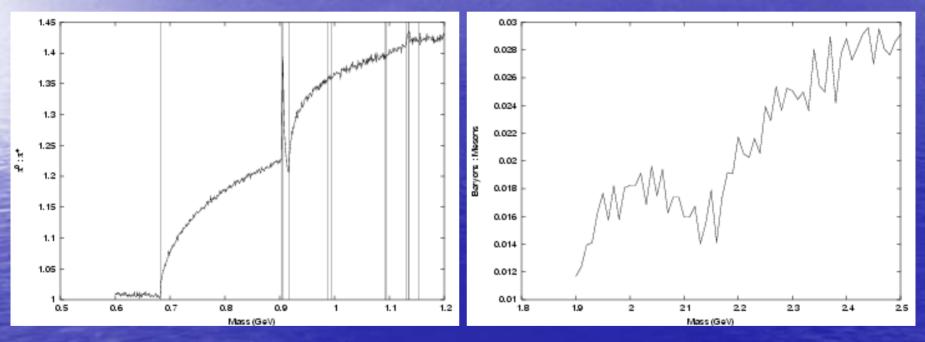

- Three different algorithms for cluster decays currently in Herwig++
 – Fortran Herwig
 – Kupco¹ Method
 - A new method (currently in development)

¹A. Kupco, *Cluster Hadronization in Herwig 5.9*, hep-ph/9906412

Fortran Herwig

- Probability a cluster flavour *i,j* decays into hadrons *a* and *b*, by drawing a flavour *k* from the vacuum is
 - $P(a,b|i,j,k) = P_k w_a / N_{ik} w_b / N_{jk} p^*_{a,b} / p_{max}$
 - $-P_k$ is the probability of choosing flavour k
 - w is the weight of a given hadron (spin, mixing)
 - $-N_{ij}$ is the number of hadrons of flavour *i*,*j*
 - $-\rho_{ab}^{*}$ is the cm energy available for the decay
- Problem: As new decay modes are added less chance of choosing another mode of the same flavour
 - Also, many properties are dictated by N's

Fortran Herwig ... continued

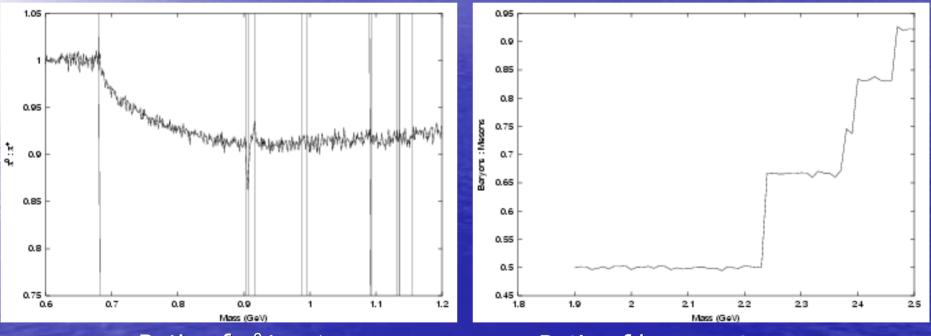

Ratio of π^0 to π^+

Ratio of baryons to mesons

Kupco Method

Kupco suggested instead that add up all the modes <u>available</u> and chose from those - w_{ab} = P_kw_aw_bp^{*}_{ab} - P(a,b|i,j,k) = w_{ab}/Σ w_{cd}
Problem: As more mesons are added, the baryons are suppressed.

Kupco Method ... continued


Ratio of π^0 to π^+

Ratio of baryons to mesons

A new method

- Separate flavour drawn from vacuum from selection of particular hadrons
- Still use the idea of Kupco's that only modes with available phase space are used.
- full details still in development

A new method ... continued

Ratio of π^0 to π^+

Ratio of baryons to mesons

Conclusion

- Most of algorithm identical to fortran Herwig
- New cluster decay method is performing as expected
- Problems with hadron decay currently prevent further comparisons
 - Multiplicities
 - momentum distributions
- Still a work in progress