Herwig++

Stefan Gieseke

Institut für Theoretische Physik Universität Karlsruhe (TH)

work with A Ribon, P Richardson, MH Seymour, P Stephens, BR Webber (Cambridge, Durham, CERN)

- Some features of Herwig++
- Results for e^+e^- Annihilation
- Outlook.

SG, P. Stephens and B. Webber, JHEP 0312 (2003) 045 [hep-ph/0310083]

SG, A. Ribon, M. H. Seymour, P. Stephens and B. Webber, JHEP 0402 (2003) 005 [hep-ph/0311208]

e^+e^- Event Generator

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

The new generator Herwig++

Complete rewrite of HERWIG in C++

- aiming at full multi-purpose generator for LHC and future colliders.
- Preserve main features of HERWIG such as
 - angular ordered parton shower
 - Cluster Hadronization
- New features and improvements
 - improved parton shower evolution for heavy quarks
 - consistent radiation from unstable particles

HERWIG's growth...

Use of ThePEG in Herwig++

Won't re-invent the wheel

Share administrative overhead, common to event generators with Pythia7

ThePEG = Toolkit for high energy Physics Event Generation

Independent *physics* implementation

Large but very flexible implementation

Common basis for Pythia7/Herwig++:

- **X** Lack of independence.
- **X** Miss the possiblity to test codes against each other.
- ✓ Physics, however, is still independent.
- \checkmark Beneficial for the user to have the same framework.
- ✓ Running Herwig++ with the Lund String Fragmentation from Pythia7 is very simple!

Hard interactions

• Basic ME's included in ThePEG, such as:

$$e^+e^-
ightarrow qar{q}$$
, partonic $2
ightarrow 2$,

we use them.

- Soft and hard matrix element corrections implemented for $e^+e^- \rightarrow q\bar{q}g$.
- AMEGIC++ will provide arbitrary ME's for multiparton final states via AMEGICInterface.
- CKKW ME+PS foreseen.
- Other authors can easily include their own matrix elements (\rightarrow safety of OO code)

Quasi–Collinear Limit (Heavy Quarks)

Sudakov-basis p,n with $p^2=M^2$ ('forward'), $n^2=0$ ('backward'),

$$egin{array}{rcl} p_q &=& zp+eta_qn-q_ot \ p_g &=& (1-z)p+eta_gn+q_ot \end{array}$$

Collinear limit for radiation off heavy quark,

$$P_{gq}(z, \boldsymbol{q}^{2}, m^{2}) = C_{F} \left[\frac{1+z^{2}}{1-z} - \frac{2z(1-z)m^{2}}{\boldsymbol{q}^{2}+(1-z)^{2}m^{2}} \right]$$
$$= \frac{C_{F}}{1-z} \left[1+z^{2} - \frac{2m^{2}}{z\tilde{q}^{2}} \right]$$

 $\longrightarrow \tilde{q}^2 \sim \boldsymbol{q}^2$ may be used as evolution variable.

 $q\bar{q}g$ –Phase space (x, \bar{x})

Single emission:

New evolution variables

Kinematics to allow better treatment of heavy particles, avoiding overlapping regions in phase space, in particular for soft emissions

We choose ${ ilde q}^2$ as new evolution variable,

$$ilde{q}^2 = rac{oldsymbol{q}^2}{z^2(1-z)^2} + rac{m^2}{z^2} \quad ext{for} \quad q o qg$$

and with the argument of running α_S chosen according to

$$lpha_S(z^2(1-z)^2 ilde q^2)$$

angular ordering

$$ilde{q}_{i+1} < z_i ilde{q}_i \qquad ilde{k}_{i+1} < (1-z_i) ilde{q}_i$$

Technically: *reinterpretation* of known evolution variables, i.e. the branching probability for $a \rightarrow bc$ still is

$$dP(a \rightarrow bc) = \frac{d\tilde{q}^2}{\tilde{q}^2} \frac{C_i \alpha_S}{2\pi} P_{bc}(z, \tilde{q}) dz$$

 \longrightarrow Sudakov's etc. technically remain the same!

$q\bar{q}g$ Phase Space old vs new variables

Consider (x,\bar{x}) phase space for $e^+e^- \to q\bar{q}g$

- **X** Larger dead region with new variables.
- ✓ Smooth coverage of soft gluon region.
- ✓ No overlapping regions in phase space.

Universal cutoff parameter δ

- Parton shower termination determined by Q_g .
- Q_g flavour dependent.
- Universal parameter δ in configuration file.

Parametrization of Q_g in terms of δ, m_q

$$Q_g = \frac{\delta - 0.3m_q}{2.3}$$

Hard Matrix Element Corrections

- Points (x, \bar{x}) in dead region chosen acc to LO $e^+e^- \rightarrow q\bar{q}g$ matrix element and accepted acc to ME weight.
- About 3% of all events are actually hard $q\bar{q}g$ events.
- Red points have weight > 1, practically no error by setting weight to one.
- Event oriented according to given $q\bar{q}$ geometry. Quark direction is kept with weight $x^2/(x^2 + \bar{x}^2)$.

Soft Matrix Element Corrections

- Ratio ME/PS compares emission with result from true ME if slightly away from soft/collinear region.
- Veto on 'hardest emission so far' in p_{\perp} .
- Massive splitting function very important!

Example with heavy quark, $m^2/Q^2 = 0.1$:

Cluster hadronization in a nutshell

- Nonperturbative $g \rightarrow q\bar{q}$ splitting (q = uds) isotropically. Here, $m_g \approx 750 \text{ MeV} > 2m_q$.
- Cluster formation, universal spectrum (see below)
- Cluster fission, until

$$M^{p} < M^{p}_{\max} + (m_{1} + m_{2})^{p}$$

where masses are chosen from

$$M_{i} = \left[\left(M^{P} - (m_{i} + m_{3})^{P} \right) r_{i} + (m_{i} + m_{3})^{P} \right]^{1/P},$$

with additional phase space contraints. Constituents keep moving in their original direction.

• Cluster Decay

$$P(a_{i,q}, b_{q,j}|i,j) = \frac{W(a_{i,q}, b_{q,j}|i,j)}{\sum_{M/B} W(c_{i,q'}, d_{q',j}|i,j)}.$$

New! Meson/Baryon ratio is parametrized in terms of diquark weight. In HERWIG the sum ran over all possible hadrons.

Stefan Gieseke, HERA/LHC meeting, CERN, 11-13 Oct 2004

12

Decays

- FORTRAN HERWIG is reproduced with Hw64Decayer using the same Matrix element codes as before (will be used for hadronic decays right now)
- DecayerAMEGIC gets final states for a perturbative decay mode directly from AMEGIC++
- Better hadronic decayers are currently being developed for particular decay modes.
- Status: 448 particles with a total of 2607 decay modes. . .
- Spin correlations.
- \longrightarrow Peter Richardson's talk.

Hadron Multiplicities

Particle	Experiment	Measured	Old Model	Herwig++	Fortran
All Charged	M,A,D,L,O	20.924 ± 0.117	20.22^{*}	20.814	20.532 [*]
γ	A,O	21.27 ± 0.6	23.032	22.67	20.74
π^0	A,D,L,O	9.59 ± 0.33	10.27	10.08	9.88
$\rho(770)^{0}$	A,D	1.295 ± 0.125	1.235	1.316	1.07
π^{\pm} .	A,O	17.04 ± 0.25	16.30	16.95	16.74
$ ho(770)^{\pm}$	0	2.4 ± 0.43	1.99	2.14	2.06
η	A,L,O	0.956 ± 0.049	0.886	0.893	0.669^{*}
$\omega(782)$	A,L,O	1.083 ± 0.088	0.859	0.916	1.044
$\eta'(958)$	A,L,O	0.152 ± 0.03	0.13	0.136	0.106
K^0	S,A,D,L,O	2.027 ± 0.025	2.121^{*}	2.062	2.026
$K^{*}(892)^{0}$	A,D,O	0.761 ± 0.032	0.667	0.681	0.583^{*}
$K^{*}(1430)^{0}$	D,O	0.106 ± 0.06	0.065	0.079	0.072
K^{\pm}	A,D,O	2.319 ± 0.079	2.335	2.286	2.250
$K^{*}(892)^{\pm}$	A,D,O	0.731 ± 0.058	0.637	0.657	0.578
$\phi(1020)$	A,D,O	0.097 ± 0.007	0.107	0.114	0.134^{*}
p	A,D,O	0.991 ± 0.054	0.981	0.947	1.027
Δ^{++}	D,O	0.088 ± 0.034	0.185	0.092	0.209^{*}
Σ^{-}	0	0.083 ± 0.011	0.063	0.071	0.071
Λ	A,D,L,O	0.373 ± 0.008	0.325^{*}	0.384	0.347^{*}
Σ^0	A,D,O	0.074 ± 0.009	0.078	0.091	0.063
Σ^+	0	0.099 ± 0.015	0.067	0.077	0.088
$\Sigma(1385)^{\pm}$	A,D,O	0.0471 ± 0.0046	0.057	0.0312^{*}	0.061^{*}
Ξ	A,D,O	0.0262 ± 0.001	0.024	0.0286	0.029
$\Xi(1530)^{0}$	A,D,O	0.0058 ± 0.001	0.026^{*}	0.0288^{*}	0.009^{*}
Ω^{-}	A,D,O	0.00125 ± 0.00024	0.001	0.00144	0.0009

Hadron Multiplicities (ctd')

Particle	Experiment	Measured	Old Model	Herwig++	Fortran
$f_2(1270)$	D,L,O	0.168 ± 0.021	0.113	0.150	0.173
$f'_{2}(1525)$	D	0.02 ± 0.008	0.003	0.012	0.012
D^{\pm}	A,D,O	0.184 ± 0.018	0.322^{*}	0.319^{*}	0.283^{*}
$D^{*}(2010)^{\pm}$	A,D,O	0.182 ± 0.009	0.168	0.180	0.151^{*}
D^0	A,D,O	0.473 ± 0.026	0.625^{*}	0.570^{*}	0.501
D_s^{\pm}	A,O	0.129 ± 0.013	0.218^{*}	0.195^{*}	0.127
$D_s^{*\pm}$	0	0.096 ± 0.046	0.082	0.066	0.043
J/Ψ	A,D,L,O	0.00544 ± 0.00029	0.006	0.00361^{*}	0.002^{*}
Λ_c^+	D,O	0.077 ± 0.016	0.006^{*}	0.023^{*}	0.001^{*}
$\Psi'(3685)$	D,L,O	0.00229 ± 0.00041	0.001^{*}	0.00178	0.0008^{*}

of *'s = observables with more than 3σ deviation:

OldModel : Herwig++ : Fortran = 9 : 7 : 13

Hadron Multiplicities (ctd')

We can compare χ^2 's:

model	$\sum \chi^2/{ m dof} =$
DKMode 0:	543.84/35 = 15.54
DKMode 1:	3644.33/35 = 104.12
Herwig++:	277.16/35 = 7.92
no D^{\pm} :	= 6.54
HW65d:	7151.13/35 = 204.32
HW65t:	490.52/35 = 14.01
no J/ψ :	= 4.38

Jet Multiplicity

Jet Multiplicity (PETRA, LEP, LEPII)

Jet Multiplicity @ Next Linear Collider

Herwig++ and NLLA pQCD (Catani, Fiorani, Dokshitzer, Webber, 1992); jet events with $n_f = 5$.

Thrust — ME Corrections off/on

Stefan Gieseke, HERA/LHC meeting, CERN, 11-13 Oct 2004

Major, Minor, Oblateness

All Thrust-related distributions slightly wide, ie too many 2-jet like on one side and too many spherical events on the other side.

$p_{\perp,\mathrm{in}}^T$ — ME corrections off/on

Four Jet Angles I

B-fragmentation function

HERWIG 6.4, very sensitive on hadronization!

B-fragmentation function

Only parton shower parameters varied!

Currently. . .

- Parton shower implementations of evolution in our 'new variables' (hep-ph/0310083) ongoing.
- First results for Drell Yan coming up.
- Decays.

What's next?

Near Future. . .

- ★ Initial state shower:
 - Complete implementation and tests.
- **★** Refine e^+e^- :
 - Full CKKW ME+PS matching.
 - Precision tune to LEP data should be possible.
- ★ with IS and FS showers running:
 - Jets and shapes in DIS would be next logical step.
 - We can start to test Drell-Yan and jets in pp collisions.
 - Cross check with Tevatron data and finally make predictions for the LHC.
- ★ Underlying Event.
- ★ Hadronic Decays: *NEW!* many decays improved, spin correlations (P Richardson).
- ★ New Ideas: . . .

We have completed a new event generator for e^+e^- Annihilation:

Herwig++1.0

Next version for hadronic collisions in progress.