The new MC event generator Herwig++

Stefan Gieseke

University of Cambridge Cavendish Laboratory

work with A Ribon, MH Seymour, P Stephens, BR Webber (Cambridge, CERN)

- Introduction
- Tour of Herwig++
- Results for e^+e^- Annihilation
- Outlook

SG, P. Stephens and B. Webber, JHEP **0312** (2003) 045 [hep-ph/0310083] SG, A. Ribon, M. H. Seymour, P. Stephens and B. Webber, JHEP **0402** (2003) 005 [hep-ph/0311208]

e^+e^- Event Generator

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

The new generator Herwig++

Complete rewrite of HERWIG in C++

- aiming at full multi-purpose generator for LHC and future colliders.
- Preserve main features of HERWIG such as
 - angular ordered parton shower
 - Cluster Hadronization
- New features and improvements
 - improved parton shower evolution for heavy quarks
 - consistent radiation from unstable particles

HERWIG's growth...

Use of ThePEG in Herwig++

Won't re-invent the wheel

Share administrative overhead, common to event generators with Pythia7

ThePEG = Toolkit for high energy Physics Event Generation

Independent *physics* implementation

Large but very flexible implementation

Common basis for Pythia7/Herwig++:

- **X** Lack of independence.
- **X** Miss the possiblity to test codes against each other.
- ✓ Physics, however, is still independent.
- \checkmark Beneficial for the user to have the same framework.
- ✓ Running Herwig++ with the Lund String Fragmentation from Pythia7 is very simple!

Hard interactions

• Basic ME's included in ThePEG, such as:

$$e^+e^-
ightarrow qar{q}$$
, partonic $2
ightarrow 2$,

we use them.

- Soft and hard matrix element corrections imlemented for $e^+e^- \rightarrow q\bar{q}g$.
- AMEGIC++ will provide arbitrary ME's for multiparton final states via AMEGICInterface.
- CKKW ME+PS foreseen.
- Other authors can easily include their own matrix elements (\rightarrow safety of OO code)

Quasi–Collinear Limit (Heavy Quarks)

Sudakov-basis p,n with $p^2=M^2$ ('forward'), $n^2=0$ ('backward'),

$$egin{array}{rcl} p_q &=& zp+eta_qn-q_ot \ p_g &=& (1-z)p+eta_gn+q_ot \end{array}$$

Collinear limit for radiation off heavy quark,

$$P_{gq}(z, \boldsymbol{q}^{2}, m^{2}) = C_{F} \left[\frac{1+z^{2}}{1-z} - \frac{2z(1-z)m^{2}}{\boldsymbol{q}^{2}+(1-z)^{2}m^{2}} \right]$$
$$= \frac{C_{F}}{1-z} \left[1+z^{2} - \frac{2m^{2}}{z\tilde{q}^{2}} \right]$$

 $\longrightarrow \tilde{q}^2 \sim \boldsymbol{q}^2$ may be used as evolution variable.

 $q\bar{q}g$ –Phase space (x, \bar{x})

Single emission:

$q\bar{q}g$ Phase Space old vs new variables

Consider (x,\bar{x}) phase space for $e^+e^- \to q\bar{q}g$

- **X** Larger dead region with new variables.
- ✓ Smooth coverage of soft gluon region.
- ✓ No overlapping regions in phase space.

Universal cutoff parameter δ

Require threshold in parton shower phase space

$$Q_{\rm thr} = \beta m_q + \delta \qquad (\beta = 0.85)$$

parametrization of Q_g in terms of δ, m_q

$$Q_g = \frac{\delta - 0.3m_q}{2.3}$$

9

12

10 11

Hard Matrix Element Corrections

- Points (x, \bar{x}) in dead region chosen acc to LO $e^+e^- \rightarrow q\bar{q}g$ matrix element and accepted acc to ME weight.
- About 3% of all events are actually hard $q\bar{q}g$ events.
- Red points have weight > 1, practically no error by setting weight to one.
- Event oriented according to given $q\bar{q}$ geometry. Quark direction is kept with weight $x^2/(x^2 + \bar{x}^2)$.

Soft Matrix Element Corrections

ME/PS

0

0.65

0.7

0.75

0.8

x

0.85

0.9

0.95

1

0.9

- Ratio ME/PS compares emission with result from true ME if slightly away from soft/collinear region.
- Veto on 'hardest emission so far' in p_{\perp} .
- Massive splitting function very important!

Example with heavy quark, $m^2/Q^2 = 0.1$:

Comparison with massless splitting function

 $\bar{x} = 0.75$, massless

Stefan Gieseke, DIS2004, Štrbské Pleso, 14-18 April 2004

Cluster hadronization in a nutshell

- Nonperturbative $g \rightarrow q\bar{q}$ splitting (q = uds) isotropically. Here, $m_g \approx 750 \text{ MeV} > 2m_q$.
- Cluster formation, universal spectrum (see below)
- Cluster fission, until

$$M^{p} < M^{p}_{\max} + (m_{1} + m_{2})^{p}$$

where masses are chosen from

$$M_{i} = \left[\left(M^{P} - (m_{i} + m_{3})^{P} \right) r_{i} + (m_{i} + m_{3})^{P} \right]^{1/P},$$

with additional phase space contraints. Constituents keep moving in their original direction.

• Cluster Decay

$$P(a_{i,q}, b_{q,j}|i,j) = \frac{W(a_{i,q}, b_{q,j}|i,j)}{\sum_{M/B} W(c_{i,q'}, d_{q',j}|i,j)}.$$

New! Meson/Baryon ratio is parametrized in terms of diquark weight. In HERWIG the sum ran over all possible hadrons.

Stefan Gieseke, DIS2004, Štrbské Pleso, 14-18 April 2004

Decays

- FORTRAN HERWIG is reproduced with Hw64Decayer using the same Matrix element codes as before (will be used for hadronic decays right now)
- DecayerAMEGIC gets final states for a decay mode directly from AMEGIC++
- Room for improvement. . .

Results

Aim: test new parton shower and its interplay with other parts of the program in great detail.

- $e^+e^- \rightarrow$ jets, mainly at Z^0 .
- hard and soft ME corrections.
- Cutoff parameter δ varied.

Analysis:

- Each bin *i*: data $D_i \pm \delta D_i$ and MC result $M_i \pm \delta D_i$.
- Normalization N MC/data not necessarily given.
- $\delta D_i/D_i > 5\%$ to emphasize global strategy.
- Then

$$\chi^2 = \sum_i \chi_i^2 = \sum_i \frac{\left(D_i - NM_i\right)^2}{\delta D_i^2 + \delta M_i^2}$$
$$R_i = \frac{M_i - D_i}{D_i} \pm \left(\frac{\delta M_i}{D_i} \oplus \frac{M_i \delta D_i}{D_i^2}\right)$$

Most plots in the following include

- Histograms with $\delta=1.7, 2.3, 3.2\,{\rm GeV}$ and data.
- R_i compared to $\delta D_i/D_i$ (yellow band).
- χ_i^2/χ^2 for each bin.

Hadron Multiplicities

Particle	Experiment	Measured	Old Model	Herwig++	Fortran
All Charged	M,A,D,L,O	20.924 ± 0.117	20.22^{*}	20.814	20.532 [*]
γ	A,O	21.27 ± 0.6	23.032	22.67	20.74
π^0	A,D,L,O	9.59 ± 0.33	10.27	10.08	9.88
$ ho(770)^{0}$	A,D	1.295 ± 0.125	1.235	1.316	1.07
π^{\pm}	A,O	17.04 ± 0.25	16.30	16.95	16.74
$ ho(770)^{\pm}$	0	2.4 ± 0.43	1.99	2.14	2.06
η	A,L,O	0.956 ± 0.049	0.886	0.893	0.669^{*}
$\omega(782)$	A,L,O	1.083 ± 0.088	0.859	0.916	1.044
$\eta'(958)$	A,L,O	0.152 ± 0.03	0.13	0.136	0.106
K^0	S,A,D,L,O	2.027 ± 0.025	2.121^{*}	2.062	2.026
$K^{*}(892)^{0}$	A,D,O	0.761 ± 0.032	0.667	0.681	0.583^{*}
$K^*(1430)^0$	D,O	0.106 ± 0.06	0.065	0.079	0.072
K^{\pm}	A,D,O	2.319 ± 0.079	2.335	2.286	2.250
$K^{*}(892)^{\pm}$	A,D,O	0.731 ± 0.058	0.637	0.657	0.578
$\phi(1020)$	A,D,O	0.097 ± 0.007	0.107	0.114	0.134 [*]
p	A,D,O	0.991 ± 0.054	0.981	0.947	1.027
Δ^{++}	D,O	0.088 ± 0.034	0.185	0.092	0.209^{*}
Σ^{-}	0	0.083 ± 0.011	0.063	0.071	0.071
Λ	A,D,L,O	0.373 ± 0.008	0.325^{*}	0.384	0.347^{*}
Σ^0	A,D,O	0.074 ± 0.009	0.078	0.091	0.063
Σ^+	0	0.099 ± 0.015	0.067	0.077	0.088
$\Sigma(1385)^{\pm}$	A,D,O	0.0471 ± 0.0046	0.057	0.0312^{*}	0.061^{*}
Ξ^{-}	A,D,O	0.0262 ± 0.001	0.024	0.0286	0.029
$\Xi(1530)^{0}$	A,D,O	0.0058 ± 0.001	0.026^{*}	0.0288^{*}	0.009^{*}
Ω^{-}	A,D,O	0.00125 ± 0.00024	0.001	0.00144	0.0009

Hadron Multiplicities (ctd')

Particle	Experiment	Measured	Old Model	$Herwig{++}$	Fortran
$f_2(1270)$	D,L,O	0.168 ± 0.021	0.113	0.150	0.173
$f'_{2}(1525)$	D	0.02 ± 0.008	0.003	0.012	0.012
$\bar{D^{\pm}}$	A,D,O	0.184 ± 0.018	0.322^{*}	0.319^{*}	0.283^{*}
$D^{*}(2010)^{\pm}$	A,D,O	0.182 ± 0.009	0.168	0.180	0.151^{*}
D^0	A,D,O	0.473 ± 0.026	0.625^{*}	0.570^{*}	0.501
D_s^{\pm}	A,O	0.129 ± 0.013	0.218^{*}	0.195^{*}	0.127
$D_s^{*\pm}$	0	0.096 ± 0.046	0.082	0.066	0.043
J/Ψ	A,D,L,O	0.00544 ± 0.00029	0.006	0.00361^{*}	0.002^{*}
Λ_c^+	D,O	0.077 ± 0.016	0.006^{*}	0.023^{*}	0.001^{*}
$\Psi'(3685)$	D,L,O	0.00229 ± 0.00041	0.001^{*}	0.00178	0.0008^{*}

of *'s = observables with more than 3σ deviation:

OldModel : Herwig++ : Fortran = 9 : 7 : 13

k_{\perp} Algorithm ("Durham"–Algorithm)

• For each pair *i*, *j* of particles in an event calculate the 'distance'

$$y_{ij} = \frac{2\min(E_i^2, E_j^2)}{Q^2} (1 - \cos \theta_{ij}).$$

[resolution scale $Q_{ij} = Q \sqrt{y_{ij}}$]

- The pair with minimum y_{ij} is clustered into a pseudoparticle with momentum $p = p_i + p_j$.
- Stop when all particles are clustered or all $y_{ij} > y_{cut}$.

We have an n-jet event if n particles or pseudoparticles are left at a given y_{cut} .

There are other jet algorithms with a different distance measure (JADE) or recombination scheme. We have interfaced the KtJet package for jet clustering.

Jet Rates

$$R_n = \sigma(n\text{-jets})/\sigma(\text{jets}) \qquad (n = 2..5)$$

 $R_6 = \sigma(> 5\text{-jets})/\sigma(\text{jets})$

Jet Multiplicity

Jet Multiplicity (PETRA, LEP, LEPII)

Event Shape Variables, Definition

S

$$F(\boldsymbol{n}) = rac{\sum_{lpha} |\boldsymbol{p}_{lpha} \cdot \boldsymbol{n}|}{\sum_{lpha} |\boldsymbol{p}_{lpha}|}$$

Find \boldsymbol{n} , such that thrust

$$T = \max_{\boldsymbol{n}} F(\boldsymbol{n})$$
$$= F(\boldsymbol{n}_T) ,$$

thrust minor

$$egin{aligned} M &= \max_{oldsymbol{n}oldsymbol{\perp}oldsymbol{n}_T}F(oldsymbol{n}) \ &= F(oldsymbol{n}_M) \;, \end{aligned}$$

Eigenvector $oldsymbol{n}_S$ sphericity axis

$$oldsymbol{n}_m = oldsymbol{n}_T imes oldsymbol{n}_M$$
 $m = F(oldsymbol{n}_m)$

$$Q_{ij} = rac{\sum_lpha (oldsymbol{p}_lpha)_i (oldsymbol{p}_lpha)_j}{\sum_lpha oldsymbol{p}_lpha^2}$$

Diagonalize, eigenvalues

 $\lambda_1 > \lambda_2 > \lambda_3$ $\lambda_1 + \lambda_2 + \lambda_3 = 1$

etc.

$$S = rac{3}{2}(\lambda_2 + \lambda_3)$$

 $P = \lambda_2 - \lambda_3$

$$I = \lambda_2 - \lambda_3$$
$$A = \frac{3}{2}\lambda_3$$

C, D parameter

$$L_{ij} = \frac{\sum_{\alpha} (\boldsymbol{p}_{\alpha})_{i} (\boldsymbol{p}_{\alpha})_{j} / |\boldsymbol{p}_{\alpha}|}{\sum_{\alpha} |\boldsymbol{p}_{\alpha}|}$$

Diagonalize, eigenvalues

$$\lambda_1 + \lambda_2 + \lambda_3 = 1$$

and define

$$C = 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)$$
$$D = 27\lambda_1\lambda_2\lambda_3$$

Stefan Gieseke, DIS2004, Štrbské Pleso, 14–18 April 2004 ____

Thrust — ME Corrections off/on

Major, Minor, Oblateness

All Thrust-related distributions slightly wide, ie too many 2-jet like on one side and too many spherical events on the other side.

Four Jet Angles — **Definitions**

Bengtsson–Zerwas angle

$$\chi_{BZ} = \measuredangle(oldsymbol{p}_1 imes oldsymbol{p}_2, oldsymbol{p}_3 imes oldsymbol{p}_4)$$

Körner–Schierholz–Willrodt angle

$$\Phi_{KSW} = \frac{1}{2} \left[\angle (\boldsymbol{p}_1 \times \boldsymbol{p}_3, \boldsymbol{p}_2 \times \boldsymbol{p}_4) + \angle (\boldsymbol{p}_1 \times \boldsymbol{p}_4, \boldsymbol{p}_2 \times \boldsymbol{p}_3) \right]$$

(modified) Nachtmann-Reiter angle

$$\theta_{NR}^* = \angle (\boldsymbol{p}_1 - \boldsymbol{p}_2, \boldsymbol{p}_3 - \boldsymbol{p}_4)$$

 $lpha_{34}$:

$$\alpha_{34} = \angle(\boldsymbol{p}_3, \boldsymbol{p}_4)$$

Four Jet Angles

$p_{\perp,\mathrm{in}}^T$ — ME corrections off/on

 $p_{\perp, ext{out}}^T$, y^T

Proton Momentum (all, *uds*, *b*)

B-fragmentation function

HERWIG 6.4, very sensitive on hadronization!

B-fragmentation function

Only parton shower parameters varied!

Recommendation

. . . However, the different observables have to be weighted sensibly.

- Low cutoff preferred by event shapes, jet rates, differential jet rates.
- High cutoff preferred by Single Particle distributions along thrust or sphericity axis.
- Either high or low cutoff for y_{nm} .
- High cutoff preferred by Identified particle spectra, particularly for heavy flavour events.
- Intermediate cutoff preferred by *B* fragmentation function.

We recommend the intermediate value.

Parameter	Default	Initial
$\alpha_s(M_Z)$	0.118	0.114
$\delta/{ m GeV}$	2.3	
$m_g/{ m GeV}$	0.750	
$Q_{\min}^{-}/{\sf GeV}$ in $lpha_s(Q_{\min})$	0.631	
CIMax/GeV	3.2	3.35
CIPow	2.0	
PSplt1	1	
PSplt2	0.33	
B1Lim	0.0	
CIDir1	1	—
CIDir2	1	—
CISmr1	0.40	
CISmr2	0.0	
Pwt_d	1.0	
Pwt_u	1.0	
Pwt_s	0.85	1.0
Pwt_c	1.0	
Pwt_b	1.0	
Pwt_{di}	0.55	1.0
Singlet Weight	1.0	
Decuplet Weight	0.7	1.0

Additional Complications in pp

- + backward parton evolution
- + soft underlying event

What's next?

Near Future. . .

- ★ Initial state shower:
 - Complete implementation and tests.
- **★** Refine e^+e^- :
 - Full CKKW ME+PS matching.
 - Precision tune to LEP data should be possible.
- ★ with IS and FS showers running:
 - we can start to test Drell-Yan and jets in pp collisions.
 - cross check with Tevatron data and finally make predictions for the LHC.
 - Study of **DIS** possible.
- ★ Underlying Event.
- **★** Hadronic Decays: NEW! τ -decays, Spin correlations (P Richardson).
- ★ New Ideas: soft gluons, improved shower algorithm, NLO, . . .

Schedule?

• Ready for LHC!

We have completed a new event generator for e^+e^- Annihilation:

Herwig++ 1.0

http://www.hep.phy.cam.ac.uk/theory/Herwig++