QCD Simulation for LHC and Herwig++

Bryan Webber University of Cambridge Cavendish Laboratory

with Stefan Gieseke, Alberto Ribon, Mike Seymour & Phil Stephens (Cambridge, Manchester, CERN)

- Some issues in QCD simulation for LHC
 - Improving shower variables
 - Combining matrix elements and showers
 - Multiscale showering
- Herwig++
 - Overview
 - Hadronization model
 - Results (e^+e^-)
 - Outlook

S. Gieseke, P. Stephens and BW, JHEP 0312 (2003) 045 [hep-ph/0310083]

S. Gieseke, A. Ribon, M. H. Seymour, P. Stephens and BW, JHEP 0402 (2003) 005 [hep-ph/0311208]

1

e^+e^- Event Generator

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Additional Complications in pp

- backward parton evolution
- underlying event (Odagiri talk)

Collinear Enhancement (Light Partons)

ME involving $q \to qg$ (or $g \to gg$) strongly enhanced whenever emitted gluon is almost collinear. Propagator factor

$$\frac{1}{(p_q + p_g)^2} \approx \frac{1}{2E_q E_g (1 - \cos \theta_{qg})}$$

- soft+collinear divergences.
- dominant contribution to the ME.

Collinear factorization

$$egin{aligned} &|M_{p+1}|^2 d\Phi_{p+1} pprox |M_p|^2 d\Phi_p rac{dt}{t} rac{lpha_s}{2\pi} P(z) dz d\phi \ &P(z) = C_F rac{1+z^2}{1-z} \end{aligned}$$

 \rightarrow Parton shower MC.

• Shower resums leading logarithmic contributions.

Quasi–Collinear Limit (Heavy Quarks)

• Sudakov basis p,n with $p^2=m^2$ ('forward'), $n^2=0$ ('backward'), $p_\perp^2=-{m p}_\perp^2$

$$egin{array}{rcl} p_q &=& zp+eta_qn-p_ot \ p_g &=& (1-z)p+eta_gn+p_ot \end{array}$$

• Quasi-collinear limit (Catani et al.): for $|m{p}_{\perp}| \sim m \ll p_+$

$$P_{qq}(z, \boldsymbol{p}_{\perp}^{2}, m^{2}) = C_{F} \left[\frac{1+z^{2}}{1-z} - \frac{2z(1-z)m^{2}}{\boldsymbol{p}_{\perp}^{2} + (1-z)^{2}m^{2}} \right]$$
$$\equiv \frac{C_{F}}{1-z} \left[1+z^{2} - \frac{2m^{2}}{z\tilde{q}^{2}} \right]$$

• Generalised angular variable: for $m \to 0$, $\tilde{q} \sim |{m p}_{\perp}|/z(1-z) \sim E heta$

• Collinear limit: for $p_{\perp}
ightarrow 0\,, \quad ilde{q} \sim m/z\,, \quad P_{qq} \sim C_F(1-z)$

New evolution variables

• Adopt \tilde{q}^2 as new evolution variable: $\tilde{q}^2 = rac{m{p}_\perp^2}{z^2(1-z)^2} + rac{m^2}{z^2}$ for q o qg

• Argument of running α_S chosen according to

$$lpha_{S}\left(z^{2}(1-z)^{2} ilde{q}^{2}=oldsymbol{p}_{\perp}^{2}+(1-z)^{2}m^{2}
ight)$$

• Generalized angular ordering in $\tilde{q}_i \rightarrow \tilde{q}_{i+1} + \tilde{k}_{i+1}$:

$$\tilde{q}_{i+1} < z_i \tilde{q}_i$$
 $\tilde{k}_{i+1} < (1-z_i) \tilde{q}_i$

• Reinterpretation of evolution variables: branching probability for $a \rightarrow bc$ is still

$$dP(a
ightarrow bc) = rac{d ilde{q}^2}{ ilde{q}^2} rac{lpha_S}{2\pi} P_{ba}(z, ilde{q}) \, dz \, d\phi$$

 \longrightarrow Sudakov form factors etc. remain the same!

• Allows better treatment of heavy particles, avoiding collinear "dead cones" and overlapping regions in phase space, in particular for soft emissions.

Kinematics

• Sudakov basis p, n with $p^2 = m^2$, $n^2 = 0$,

$$q_i = \alpha_i p + \beta_i n + q_{\perp i}$$

- Longitudinal splitting: $\alpha_i = z_i \alpha_{i-1}$
- Transverse momenta reconstructed from $oldsymbol{p}_{ot}$,

 $oldsymbol{q}_{\perp i} = oldsymbol{p}_{\perp i} + z_i oldsymbol{q}_{\perp,i-1}$ $oldsymbol{k}_{\perp i} = -oldsymbol{p}_{\perp i} + (1-z_i)oldsymbol{q}_{\perp,i-1}$

• Recursive reconstruction of virtualities and β_i 's from

$$egin{array}{rcl} q_{i-1}^2 &=& rac{q_i^2}{z_i} + rac{k_i^2}{1-z_i} + rac{m{p}_{\perp i}^2}{z_i(1-z_i)} \ eta_i &=& rac{m{q}_{\perp i}^2 + q_i^2 - lpha_i^2 m^2}{2lpha_i(p\cdot n)} \end{array}$$

• Azimuthal angle φ chosen randomly (now), or using *azimuthal spin correlations* (planned).

 $1-z_i, \mathbf{k}_{\perp i}$

Universal cutoff parameter δ

8

Require threshold in parton shower phase space.

$$\tilde{q} > Q_{\text{thr}} = \beta m_q + \delta \qquad (\beta = 0.85)$$

Parametrization of Q_g in terms of δ, m_q

$$Q_g = \frac{\delta - 0.3m_q}{2.3}$$

b quarks:

light quarks:

 $q\bar{q}g$ phase space: old vs new variables

- No overlapping regions in phase space.
- Smooth coverage of soft gluon region.
- No collinear dead cones.
- Larger non-collinear dead region.

Hard Matrix Element Corrections

- Points $(x_q, x_{\bar{q}})$ in dead region chosen according to LO $q\bar{q}g$ matrix element and accepted according to ME weight.
- About 3% of all events are actually hard $q\bar{q}g$ events.
- Red points have weight > 1, practically no error by setting weight to one.
- Event oriented according to given $q\bar{q}$ geometry (Kleiss). Quark direction is kept with weight $x_q^2/(x_q^2 + x_{\bar{q}}^2)$.

Soft Matrix Element Corrections

- Ratio ME/PS compares emission with result from true ME if slightly away from soft/collinear region.
- Veto on 'hardest emission so far' in p_{\perp} .
- Massive splitting function very important!

Example with heavy quark, $m^2/Q^2 = 0.1$ ($\approx t\bar{t}$ at 500 GeV)

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Comparison with massless splitting function

11

Multiscale Showering

Example: $t\bar{t}$ production & decay

- 1. Hard process (scale $\sim \hat{s}$)
- 2. Showers from $t, \bar{t} \ (\hat{s} \rightarrow \Gamma_t)$
- 3. Decays t
 ightarrow Wb, $ar{t}
 ightarrow War{b}$
- 4. ISR from $t, \bar{t} (m_t \rightarrow \Gamma_t)$
- 5. FSR from $b, \bar{b} \ (m_t \to \Gamma_t)$
- 6. Global showering $(\Gamma_t \rightarrow \Gamma_b)$

etc.

Heavy Quark Decay

• In Fortran HERWIG, ISR was missing \longrightarrow infrared divergence in ME correction.

Combining Matrix Elements and Showers

Above method of hard+soft matrix element corrections is difficult to extend to NLO, or to more complicated processes.

- MC@NLO: subtract approximate NLO contributions generated by showers from exact NLO matrix elements.
 - Regularizes divergences of NLO ME!
 - All NLO results formally reproduced
 - Shower resums soft & collinear divergences to all orders
 - \longrightarrow Frixione talk.
- CKKW (+ Krauss, Lönnblad, Mrenna & Richardson): generate ME with k_T -cutoff Q_1 , apply corresponding Sudakov form factors, veto $k_T > Q_1$ in showers.
 - Q_1 dependence cancels to NLL
 - Can combine different multiplicity ME's without double counting jet rates (to NLL)
 - \longrightarrow Mrenna, Schumann talks.

Combining ME & PS: Scales

- Coherent branching \longrightarrow evolution in angle, not k_T
- k_T -cutoff Q_1 on ME \longrightarrow veto $k_T > Q_1$ in showers
- However, starting scale for showers is not $\tilde{q} = Q_1$
 - Showers must "fill in" radiation at larger angles, with $ilde{q} > Q_1$ but $k_T < Q_1$
- Construct parton "histories" (gauge invariant) from clustering sequence
 - Each parton evolves from the \tilde{q} scale at which it was "created" (shown in red)

Combining ME & PS: Kinematics

Formally subleading \longrightarrow important for MC@NLO. After showering, hard partons have virtualities $q_i^2 \neq m_i^2$ \longrightarrow boost/rescale jets. Started with

$$\sqrt{s} = \sum_{i=1}^n \sqrt{m_i^2 + oldsymbol{p}_i^2}$$

We can rescale 3-momenta with common factor K,

$$\sqrt{s} = \sum_{i=1}^n \sqrt{q_i^2 + K \boldsymbol{p}_i^2}$$

to preserve overall energy/momentum.

→ resulting jets are then **boosted** accordingly.

The new generator Herwig++

A completely new event generator in $C{++}$

- Aiming at full multi-purpose generator for LHC and future colliders.
- Preserving main features of HERWIG such as
 - angular ordered parton shower
 - cluster hadronization
- New features and improvements
 - covariant shower formulation
 - improved parton shower evolution for heavy quarks
 - consistent radiation from unstable particles (multiscale evolution)

Growth of Fortran HERWIG

Use of ThePEG in Herwig++

ThePEG = Toolkit for high energy Physics Event Generation Leif Lönnblad, http://www.thep.lu.se/ThePEG/

Share administrative overhead, common to event generators with Pythia7

Independent *physics* implementation

Large but very flexible implementation

Common basis for Pythia7/Herwig++

- Lack of independence.
- Less possiblity to test codes against each other.
- Physics is still independent.
- Beneficial for the user to have the same framework.
- Running Herwig++ with Lund String Fragmentation from Pythia7 is very simple!

PartialCollisionHandlers

Hard interactions

- Basic ME's included in ThePEG, such as $e^+e^- \rightarrow q\bar{q}$, QCD $2 \rightarrow 2$: we use them.
- Soft and hard matrix element corrections implemented for $e^+e^- \rightarrow q\bar{q}g$.
- AMEGIC++ will provide arbitrary ME's for multiparton final states via AMEGICInterface.
- CKKW ME+PS foreseen.
- Other authors can easily include their own matrix elements (\rightarrow safety of OO code)

Cluster Hadronization Model

- hard scattering
- (QED) initial/final state radiation
- partonic decays, e.g. $t \rightarrow bW$
- parton shower evolution
- nonperturbative gluon splitting
- colour singlets
- colourless clusters
- cluster fission
- cluster \rightarrow hadrons
- hadronic decays

Cluster hadronization in a nutshell

- Nonperturbative $g \rightarrow q\bar{q}$ splitting (q = uds) isotropically. Here, $m_g \approx 750 \text{ MeV} > 2m_q$.
- Cluster formation, universal spectrum (see right)
- Cluster fission until

$$M^{p} < M^{p}_{\max} + (m_{1} + m_{2})^{p}$$

where masses are chosen from

$$M_{i} = \left[\left(M^{P} - (m_{i} + m_{3})^{P} \right) r_{i} + (m_{i} + m_{3})^{P} \right]^{1/P},$$

with additional phase space constraints. Constituents keep moving in their original directions.

• Cluster decay

$$P(a_{i,q}, b_{q,j}|i,j) = \frac{W(a_{i,q}, b_{q,j}|i,j)}{\sum_{M/B} W(c_{i,q'}, d_{q',j}|i,j)}.$$

New! Meson/Baryon ratio is parametrized in terms of diquark weight. In Fortran HERWIG the sum ran over all possible hadrons.

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Primary Light Clusters

ClusterHadronization

- Cluster hadronization is designed, implemented and debugged.
- HadronSelector/ ClusterDecayer in different ways.
- Tests ongoing.
- Lund string model is implemented already in Pythia7 and will work together with Herwig++.
- This requires that final state gluons are on-shell \longrightarrow foreseen in shower.

Particle Decays

- FORTRAN HERWIG is reproduced with Hw64Decayer using the same matrix element codes as before (used for hadronic decays right now).
- DecayerAMEGIC gets final states for a decay mode directly from AMEGIC++.
- Works fine in principle, further tests required.

$Z^0 \rightarrow$ Hadron Multiplicities

Particle	Experiment	Measured	Old Model	Herwig++	Fortran
All Charged	M,A,D,L,O	20.924 ± 0.117	20.22^{*}	20.814	20.532 [*]
γ	A,O	21.27 ± 0.6	23.032	22.67	20.74
π^0	A,D,L,O	9.59 ± 0.33	10.27	10.08	9.88
$ ho(770)^{0}$	A,D	1.295 ± 0.125	1.235	1.316	1.07
π^{\pm}	A,O	17.04 ± 0.25	16.30	16.95	16.74
$\rho(770)^{\pm}$	0	2.4 ± 0.43	1.99	2.14	2.06
η	A,L,O	0.956 ± 0.049	0.886	0.893	0.669^{*}
$\omega(782)$	A,L,O	1.083 ± 0.088	0.859	0.916	1.044
$\eta'(958)$	A,L,O	0.152 ± 0.03	0.13	0.136	0.106
K^0	S,A,D,L,O	2.027 ± 0.025	2.121^{*}	2.062	2.026
$K^{*}(892)^{0}$	A,D,O	0.761 ± 0.032	0.667	0.681	0.583^{*}
$K^{*}(1430)^{0}$	D,O	0.106 ± 0.06	0.065	0.079	0.072
K^{\pm}	A,D,O	2.319 ± 0.079	2.335	2.286	2.250
$K^{*}(892)^{\pm}$	A,D,O	0.731 ± 0.058	0.637	0.657	0.578
$\phi(1020)$	A,D,O	0.097 ± 0.007	0.107	0.114	0.134^{*}
p	A,D,O	0.991 ± 0.054	0.981	0.947	1.027
Δ^{++}	D,O	0.088 ± 0.034	0.185	0.092	0.209^{*}
Σ^{-}	0	0.083 ± 0.011	0.063	0.071	0.071
Λ	A,D,L,O	0.373 ± 0.008	0.325^{*}	0.384	0.347^{*}
Σ^0	A,D,O	0.074 ± 0.009	0.078	0.091	0.063
Σ^+	0	0.099 ± 0.015	0.067	0.077	0.088
$\Sigma(1385)^{\pm}$	A,D,O	0.0471 ± 0.0046	0.057	0.0312^{*}	0.061^{*}
Ξ_	A,D,O	0.0262 ± 0.001	0.024	0.0286	0.029
$\Xi(1530)^{0}$	A,D,O	0.0058 ± 0.001	0.026^{*}	0.0288^{*}	0.009^{*}
Ω^{-}	A,D,O	0.00125 ± 0.00024	0.001	0.00144	0.0009

$Z^0 \rightarrow$ Hadron Multiplicities (ctd')

Particle	Experiment	Measured	Old Model	Herwig++	Fortran
$f_2(1270)$	D,L,O	0.168 ± 0.021	0.113	0.150	0.173
$f'_{2}(1525)$	D	0.02 ± 0.008	0.003	0.012	0.012
$\overline{D^{\pm}}$	A,D,O	0.184 ± 0.018	0.322^{*}	0.319^{*}	0.283^{*}
$D^{*}(2010)^{\pm}$	A,D,O	0.182 ± 0.009	0.168	0.180	0.151^{*}
D^0	A,D,O	0.473 ± 0.026	0.625^{*}	0.570^{*}	0.501
D_s^{\pm}	A,O	0.129 ± 0.013	0.218^{*}	0.195^{*}	0.127
$D_s^{*\pm}$	0	0.096 ± 0.046	0.082	0.066	0.043
J/Ψ	A,D,L,O	0.00544 ± 0.00029	0.006	0.00361^{*}	0.002^{*}
Λ_c^+	D,O	0.077 ± 0.016	0.006^{*}	0.023^{*}	0.001^{*}
$\Psi'(3685)$	D,L,O	0.00229 ± 0.00041	0.001^{*}	0.00178	0.0008^{*}

of *'s = observables with more than 3σ deviation:

Old Model : Herwig + : Fortran = 9 : 7 : 13

N.B. No systematic parameter tuning yet.

Charged Particle Multiplicity

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Jet Rates (Durham/ k_T Algorithm)

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Jet Multiplicity

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Jet Multiplicity (PETRA, LEP, LEPII)

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Event Shape Variables, Definition

 $Q_{ij} = rac{\sum_lpha (oldsymbol{p}_lpha)_i (oldsymbol{p}_lpha)_j}{\sum_lpha oldsymbol{p}_lpha^2}$

Diagonalize, eigenvalues

 $\lambda_1 > \lambda_2 > \lambda_3$

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$

 $S = \frac{3}{2}(\lambda_2 + \lambda_3)$

 $P = \lambda_2 - \lambda_3$

 $A = \frac{3}{2}\lambda_3$

Sphericity

Then

 $F(\boldsymbol{n}) = rac{\sum_{lpha} |\boldsymbol{p}_{lpha} \cdot \boldsymbol{n}|}{\sum_{lpha} |\boldsymbol{p}_{lpha}|}$

Find \boldsymbol{n} , such that thrust

 $T = \max_{\boldsymbol{n}} F(\boldsymbol{n})$ $= F(\boldsymbol{n}_T)$,

thrust major

 $M = \max_{\boldsymbol{n} \perp \boldsymbol{n}_T} F(\boldsymbol{n})$ $= F(\boldsymbol{n}_M)$.

thrust minor

Eigenvector \boldsymbol{n}_S sphericity axis etc.

C. D parameter

$$L_{ij} = \frac{\sum_{\alpha} (\boldsymbol{p}_{\alpha})_{i} (\boldsymbol{p}_{\alpha})_{j} / |\boldsymbol{p}_{\alpha}|}{\sum_{\alpha} |\boldsymbol{p}_{\alpha}|}$$

Diagonalize, eigenvalues

 $\lambda_1 + \lambda_2 + \lambda_3 = 1$

and define

 $C = 3(\lambda_1\lambda_2 + \lambda_2\lambda_3 + \lambda_3\lambda_1)$

 $D = 27\lambda_1\lambda_2\lambda_3$

 $oldsymbol{n}_m = oldsymbol{n}_T imes oldsymbol{n}_M$ $m = F(\boldsymbol{n}_m)$

Thrust — ME Corrections off/on

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Major, Minor, Oblateness

All Thrust-related distributions slightly wide, ie too many 2-jet like on one side and too many spherical events on the other side.

Sphericity, Planarity, Aplanarity

More emphasis on large momenta in quadratic tensor.

C and D parameter

Four–Jet Angles — Definitions

• Bengtsson–Zerwas angle

$$\chi_{BZ} = \measuredangle(oldsymbol{p}_1 imes oldsymbol{p}_2, oldsymbol{p}_3 imes oldsymbol{p}_4)$$

• Körner–Schierholz–Willrodt angle

$$\Phi_{KSW} = \frac{1}{2} \left[\angle (\boldsymbol{p}_1 \times \boldsymbol{p}_3, \boldsymbol{p}_2 \times \boldsymbol{p}_4) + \angle (\boldsymbol{p}_1 \times \boldsymbol{p}_4, \boldsymbol{p}_2 \times \boldsymbol{p}_3) \right]$$

• (Modified) Nachtmann–Reiter angle

$$\theta_{NR}^* = \measuredangle (\boldsymbol{p}_1 - \boldsymbol{p}_2, \boldsymbol{p}_3 - \boldsymbol{p}_4)$$

• Angle between softest jets

$$\alpha_{34} = \angle(\boldsymbol{p}_3, \boldsymbol{p}_4)$$

N.B. No four-parton ME in Herwig++ (yet).

Four–Jet Angles I

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Four-Jet Angles II

Single particle distributions: $p_{\perp,\text{in}}^T$

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

 $p_{\perp,\mathrm{out}}^T$ and y^T

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

Scaled momentum (all, *uds*, *b*)

Proton momentum (all, *uds*, *b*)

K^{\pm} , $(\Lambda, ar{\Lambda})$ momentum

Bryan Webber, QCD Simulation for LHC and Herwig++, KEK, 6 April 2004

B-fragmentation function

Only parton shower parameters varied!

Recommended parameters

No systematic parameter tuning yet.

- Low cutoff preferred by event shapes, jet rates, differential jet rates.
- High cutoff preferred by single particle distributions along thrust or sphericity axis.
- Either high or low cutoff for y_n .
- High cutoff preferred by identified particle spectra, particularly for heavy flavour events.
- Intermediate cutoff preferred by *B* fragmentation function.

We recommend the intermediate value.

Parameter	Default	Initial
$\alpha_s(M_Z)$	0.118	0.114
$\delta/{ m GeV}$	2.3	
$m_g/{ m GeV}$	0.750	
$Q_{\min}/{\sf GeV}$ in $lpha_s(Q_{\min})$	0.631	
CIMax/GeV	3.2	3.35
CIPow	2.0	
PSplt1	1	
PSplt2	0.33	
B1Lim	0.0	—
CIDir1	1	
CIDir2	1	
ClSmr1	0.40	
CISmr2	0.0	
Pwt_d	1.0	—
Pwt_u	1.0	
Pwt_s	0.85	1.0
Pwt_c	1.0	—
Pwt_b	1.0	
Pwt_{di}	0.55	1.0
Singlet Weight	1.0	—
Decuplet Weight	0.7	1.0

Status of Herwig++

S. Gieseke, A. Ribon, M.H. Seymour, P. Stephens, B.R. Webber (Cambridge, Manchester, CERN)

http://www.hep.phy.cam.ac.uk/theory/Herwig++

Hard Matrix Elements

- Only simple $2 \rightarrow 2$ ME so far.
- Hard and soft ME corrections for $e^+e^- \rightarrow q\bar{q}g$.
- We have a working interface to AMEGIC++. For e^+e^- this will do the job for up to 6 jets.
- CKKW ME+PS matching algorithm will be implemented.
- More processes straightforward.
- Users can easily and safely include their own matrix elements.

Parton Shower

- New parton shower developed.
- Multiscale shower designed for treatment of unstable particles (no physics implementation yet).
- New evolution variables for better treatment of heavy quarks and smooth coverage of phase space.
- Extension to spacelike shower for pp and ep ongoing.

Status of Herwig++ (ctnd')

Hadronization

- Cluster hadronization is designed and implemented completely.
- Improved cluster decays implemented and tested.
- Works very well, further thorough tests ongoing.
- Lund string fragmentation model implemented in Pythia7 will work together with Herwig++.

Decays

- Fortran HERWIG decays are reproduced with class Hw64Decayer using the same ME's as before.
- DecayerAMEGIC gets final states for decays (eg. t decay, SUSY in future) directly from AMEGIC++
- Works very well, further thorough tests required.
- More to come (EvtGen, . .)?

What's next?

Near Future. . .

- Initial state shower:
 - Complete implementation and tests.
- Refine e^+e^- :
 - Full CKKW ME+PS matching.
 - Precision tune to LEP data should be possible.
- With IS and FS showers running:
 - Can start to test Drell-Yan and jets in pp collisions.
 - Cross-check with Tevatron data and finally make predictions for the LHC.
- Underlying event.
- Hadronic decays: *NEW!* τ -decays, spin correlations (P Richardson).
- New ideas: NLO, multiscale, SUSY . . .

Schedule?

• Ready for LHC!