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Handout 3 : Interaction by 
Particle Exchange and QED

Recap
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e– �–

e+ ���

� Working towards a proper calculation of decay and scattering processes
lnitially concentrate on: e– e–

qq

• e+e– � �+�–

• e– q � e– q

� In Handout 1 covered the relativistic calculation of particle decay rates
and cross sections 

����
|M|2

flux
x (phase space)

� In Handout 2 covered relativistic treatment of spin-half particles
Dirac Equation

� This handout concentrate on the Lorentz Invariant Matrix Element
• Interaction by particle exchange
• Introduction to Feynman diagrams
• The Feynman rules for QED
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Interaction by Particle Exchange
• Calculate transition rates from Fermi’s Golden Rule

where is perturbation expansion for the Transition Matrix Element

•For particle scattering, the first two terms in the perturbation series
can be viewed as:

i

f

i

f

j“scattering in
a potential”

“scattering via an
intermediate state”

• “Classical picture” – particles act as sources for fields which give
rise a potential in which other particles scatter – “action at  a distance”

• “Quantum Field Theory picture” – forces arise due to the exchange
of virtual particles. No action at a distance + forces between particles
now due to particles

(start of non-examinable section)
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•One possible space-time picture of this process is:

•The corresponding term in the perturbation expansion is:

a c

b d

x
Vji

Vfj

i j f
time

sp
ac

e Initial state i :
Final state f :
Intermediate state j :

•This time-ordered diagram corresponds to
a “emitting” x and then b absorbing x

•Consider the particle interaction which occurs
via an intermediate state corresponding to the exchange of particle

• refers to the time-ordering where a emits x before b absorbs it
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where k runs over all particles in the matrix element
•Here we  have

is the “Lorentz Invariant” matrix element for a � c + x
�The simplest Lorentz Invariant quantity is a scalar, in this case 

is a measure of the strength of the interaction a � c + x

Note : in this “illustrative” example g is not dimensionless. 

a

x
ga

c•Need an expression for in
non-invariant matrix element

•Recall is related to the invariant matrix element by
•Ultimately aiming to obtain Lorentz Invariant ME

Note : the matrix element is only LI in the sense that it is defined in terms of
LI wave-function normalisations and that the form of the coupling is LI 
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Similarly

b d

x

gbGiving

�The “Lorentz Invariant” matrix element for the entire process is

Note:
� refers to the time-ordering where a emits x before b absorbs it

It is not Lorentz invariant, order of events in time depends on frame
� Momentum is conserved at each interaction vertex but not energy

� Particle x is “on-mass shell” i.e.
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a c

b d
i j f

time

sp
ac

e

�But need to consider also the other time ordering for the process
•This time-ordered diagram corresponds to

b “emitting” x and then a absorbing x~ ~

• x is the anti-particle of x e.g.~

W–
e– �e

�� �–

W+

e– �e

�� �–

•The Lorentz invariant matrix element for this time ordering is:

�In QM need to sum over matrix elements corresponding to same final 
state:

Energy conservation:
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•Which gives

•From 1st time ordering
a ga

c
giving

(end of non-examinable section)

• After summing over all possible time orderings, is (as anticipated)
Lorentz invariant. This is a remarkable result – the sum over all time
orderings gives a frame independent matrix element.

•Exactly the same result would have been obtained by considering the 
annihilation process
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Feynman Diagrams
• The sum over all possible time-orderings is represented by a

FEYNMAN diagram

a c

b d

In a Feynman diagram:
the LHS represents the initial state
the RHS is the final state
everything in between is “how the interaction
happened”

a c

b d
time

sp
ac

e

a c

b d
time

sp
ac

e

a c

b d

• It is important to remember that energy and momentum are conserved
at each interaction vertex in the diagram.

• The factor    is the propagator; it arises naturally from 
the above discussion of interaction by particle exchange
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�The matrix element: depends on:

The fundamental strength of the interaction at the two vertices

The four-momentum, , carried by the (virtual) particle which is
determined from energy/momentum conservation at the vertices.
Note can be either positive or negative.

For elastic scattering:

In CoM:

a c

b d q2 < 0

Here “t-channel”

termed “space-like”

Here “s-channel”

q2 > 0 termed “time-like”



Virtual Particles
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a c

b d
time

sp
ac

e a c

b d
time

sp
ac

e

a c

b d

•Momentum conserved at vertices
•Energy not conserved at vertices
•Exchanged particle “on mass shell”

•Momentum AND energy conserved
at interaction vertices

•Exchanged particle “off mass shell”

VIRTUAL PARTICLE

“Time-ordered QM” Feynman diagram 

•Can think of observable “on mass shell” particles as propagating waves
and unobservable virtual particles as normal modes between the source
particles:

Aside: V(r) from Particle Exchange
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�Can view the scattering of an electron by a proton at rest in two ways:
•Interaction by particle exchange in 2nd order perturbation theory.

a c

b d

V(r)
p

i

f

•Could also evaluate the same process in first order perturbation
theory treating proton as a fixed source of a field which gives
rise to a potential V(r)

Obtain same expression for         using
YUKAWA
potential

� In this way can relate potential and forces to the particle exchange picture
� However, scattering from a fixed potential           is not a relativistic 

invariant view



Quantum Electrodynamics (QED)
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�Now consider the interaction of an electron and tau lepton by the exchange 
of a photon. Although the general ideas we applied previously still hold,
we now have to account for the spin of the electron/tau-lepton and also 
the spin (polarization) of the virtual photon.

•The basic interaction between a photon and a charged particle can be 
introduced by making the minimal substitution (part II electrodynamics)

(Non-examinable)

(here          charge)
In QM:

Therefore make substitution: 
where

•The Dirac equation:
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Combined rest 
mass + K.E.

Potential
energy

•We can identify the potential energy of a charged spin-half particle 
in an electromagnetic field as: 

(note the A0 term is 
just:               )

•The final complication is that we have to account for the photon
polarization states.

e.g. for a real photon propagating in the z direction we have two
orthogonal transverse polarization states

Could equally have 
chosen circularly 
polarized  states
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•Previously with the example of a simple spin-less interaction we had:

a c

b d
ga gb

= =

�In QED we could again go through the procedure 
of summing the time-orderings using Dirac
spinors and the expression for      .  If we were 
to do this, remembering to sum over all photon
polarizations, we would obtain:

e–

�–

e–

�–

Interaction of �–

with photon
Interaction of e–

with photon
Massless photon propagator 
summing over polarizations 

•All the physics of QED is in the above expression !
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•The sum over the polarizations of the VIRTUAL photon has to include
longitudinal and scalar contributions, i.e. 4 polarisation states

and gives:

and the invariant matrix element becomes: 

•Using the definition of the adjoint spinor

� This is a remarkably simple expression ! It is shown in Appendix V
of Handout 2 that    transforms as a four vector. Writing

(end of non-examinable
section)

This is not obvious – for the 
moment just take it on trust 

showing that M is Lorentz Invariant
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Feynman Rules for QED
•It should be remembered that the expression 

hides a lot of complexity. We have summed over all possible time-
orderings and summed over all polarization states of the virtual
photon.  If we are then presented with a new Feynman diagram 
we don’t want to go through the full calculation again. 
Fortunately this isn’t necessary – can just write down matrix element 
using a set of simple rules 

Basic Feynman Rules:
Propagator factor for each internal line

(i.e. each real incoming or outgoing particle)

(i.e. each internal virtual particle)
Dirac Spinor for each external line

Vertex factor for each vertexe– �–

e+ ���
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Basic Rules for QED

outgoing particle

outgoing antiparticle
incoming antiparticle

incoming particle

spin 1/2

spin 1 outgoing photon
incoming photon

External Lines

Internal Lines (propagators)
� �

spin 1          photon

spin 1/2       fermion

Vertex Factors
spin 1/2       fermion (charge -|e|)

Matrix Element =  product of all factors
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e.g.
e–

�–

e–

�–

e–e–

�–�–

•Which is the same expression as we obtained previously

e– �–

e+ ��
�

e.g.

Note: � At each vertex the adjoint spinor is written first
� Each vertex has a different index 
� The         of the propagator connects the indices at the vertices 

Summary
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� Interaction by particle exchange naturally gives rise to Lorentz Invariant
Matrix Element of the form

� Derived the basic interaction in QED taking into account the spins
of the fermions and polarization of the virtual photons:

� We now have all the elements to perform proper calculations in QED !


