

Interaction by Particle Exchange

Calculate transition rates from Fermi's Golden Rule

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

where T_{fi} is perturbation expansion for the Transition Matrix Element

$$T_{fi} = \langle f|V|i\rangle + \sum_{j \neq i} \frac{\langle f|V|j\rangle \langle j|V|i\rangle}{E_i - E_j} + \dots$$

• For particle scattering, the first two terms in the perturbation series can be viewed as:

"scattering in a potential"

 V_{fi} V_{fj} j

"scattering via an intermediate state"

- "Classical picture" particles act as sources for fields which give rise a potential in which other particles scatter – "action at a distance"
- "Quantum Field Theory picture" forces arise due to the exchange of virtual particles. No action at a distance + forces between particles now due to particles

Prof. M.A. Thomson

Michaelmas 2011

103

(start of non-examinable section)

- •Consider the particle interaction $a+b \rightarrow c+d$ which occurs via an intermediate state corresponding to the exchange of particle x
- •One possible space-time picture of this process is:

- Initial state i: a+bFinal state f: c+dIntermediate state j: c+b+x
- This time-ordered diagram corresponds to a "emitting" x and then b absorbing x

•The corresponding term in the perturbation expansion is:

$$T_{fi} = \frac{\langle f|V|j\rangle\langle j|V|i\rangle}{E_i - E_j}$$

$$T_{fi}^{ab} = \frac{\langle d|V|x+b\rangle\langle c+x|V|a\rangle}{(E_a + E_b) - (E_c + E_x + E_b)}$$

• T_{fi}^{ab} refers to the time-ordering where a emits x before b absorbs it

Prof. M.A. Thomson

• Need an expression for $\langle c+x|V|a \rangle$ in non-invariant matrix element T_{fi} • Ultimately aiming to obtain Lorentz Invariant ME • Recall T_{fi} is related to the invariant matrix element by $T_{fi} = \prod_{k} (2E_k)^{-1/2} M_{fi}$ where k runs over all particles in the matrix element • Here we have $\langle c+x|V|a \rangle = \frac{M_{(a \to c+x)}}{(2E_a 2E_c 2E_x)^{1/2}}$ $M_{(a \to c+x)}$ is the "Lorentz Invariant" matrix element for $a \to c + x$ * The simplest Lorentz Invariant quantity is a scalar, in this case

$$\langle c+x|V|a\rangle = \frac{g_a}{(2E_a 2E_c 2E_x)^{1/2}}$$

 g_a is a measure of the strength of the interaction $a \rightarrow c + x$ Note : the matrix element is only LI in the sense that it is defined in terms of LI wave-function normalisations and that the form of the coupling is LI Note : in this "illustrative" example g is not dimensionless.

Prof. M.A. Thomson	Michaelmas 2011	105

Similarly
$$\langle d|V|x+b\rangle = \frac{g_b}{(2E_b 2E_d 2E_x)^{1/2}}$$

Giving $T_{fi}^{ab} = \frac{\langle d|V|x+b\rangle\langle c+x|V|a\rangle}{(E_a+E_b)-(E_c+E_x+E_b)}$
 $= \frac{1}{2E_x} \cdot \frac{1}{(2E_a 2E_b 2E_c 2E_d)^{1/2}} \cdot \frac{g_a g_b}{(E_a-E_c-E_x)}$

★The "Lorentz Invariant" matrix element for the entire process is

$$M_{fi}^{ab} = (2E_a 2E_b 2E_c 2E_d)^{1/2} T_{fi}^{ab}$$

= $\frac{1}{2E_x} \cdot \frac{g_a g_b}{(E_a - E_c - E_x)}$

<u>Note:</u>

- M_{fi}^{ab} refers to the time-ordering where a emits x before b absorbs it It is <u>not</u> Lorentz invariant, order of events in time depends on frame
- Momentum is conserved at each interaction vertex but not energy $E_j \neq E_i$
- Particle *x* is "on-mass shell" i.e. $E_x^2 = \vec{p}_x^2 + m^2$

Michaelmas 2011

★But need to consider also the other time ordering for the process

• The Lorentz invariant matrix element for this time ordering is:

$$M_{fi}^{ba} = \frac{1}{2E_x} \cdot \frac{g_a g_b}{(E_b - E_d - E_x)}$$

★ In QM need to sum over matrix elements corresponding to same final state: $M_{fi} = M_{fi}^{ab} + M_{fi}^{ba}$

$$= \frac{g_a g_b}{2E_x} \cdot \left(\frac{1}{E_a - E_c - E_x} + \frac{1}{E_b - E_d - E_x}\right)$$

$$= \frac{g_a g_b}{2E_x} \cdot \left(\frac{1}{E_a - E_c - E_x} - \frac{1}{E_a - E_c + E_x}\right) \qquad \begin{array}{l} \text{Energy conservation:} \\ (E_a + E_b = E_c + E_d)\end{array}$$

Prof. M.A. Thomson

Michaelmas 2011

107

•Which gives
$$M_{fi} = \frac{g_a g_b}{2E_x} \cdot \frac{2E_x}{(E_a - E_c)^2 - E_x^2}$$

 $= \frac{g_a g_b}{(E_a - E_c)^2 - E_x^2}$
•From 1st time ordering $E_x^2 = \vec{p}_x^2 + m_x^2 = (\vec{p}_a - \vec{p}_c)^2 + m_x^2$
giving $M_{fi} = \frac{g_a g_b}{(E_a - E_c)^2 - (\vec{p}_a - \vec{p}_c)^2 - m_x^2}$
 $= \frac{g_a g_b}{(p_a - p_c)^2 - m_x^2}$ (end of non-examinable section)
 $M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$
• After summing over all possible time orderings, M_{fi} is (as anticipated)

- **Lorentz invariant**. This is a remarkable result the sum over all time orderings gives a frame independent matrix element.
- Exactly the same result would have been obtained by considering the annihilation process

Feynman Diagrams

 The sum over all possible time-orderings is represented by a FEYNMAN diagram

termed "time-like"

 $q^2 > 0$

Virtual Particles

★ In this way can relate potential and forces to the particle exchange picture

\star However, scattering from a fixed potential V(r) is not a relativistic invariant view

Quantum Electrodynamics (QED)

* Now consider the interaction of an electron and tau lepton by the exchange of a photon. Although the general ideas we applied previously still hold, we now have to account for the spin of the electron/tau-lepton and also the spin (polarization) of the virtual photon.

(Non-examinable)
• The basic interaction between a photon and a charged particle can be
introduced by making the minimal substitution (part II electrodynamics)

$$\vec{p} \rightarrow \vec{p} - q\vec{A}; \quad E \rightarrow E - q\phi$$
 (here $q = \text{charge}$)
In QM: $\vec{p} = -i\vec{\nabla}; \quad E = i\partial/\partial t$
Therefore make substitution: $i\partial_{\mu} \rightarrow i\partial_{\mu} - qA_{\mu}$
where $A_{\mu} = (\phi, -\vec{A}); \quad \partial_{\mu} = (\partial/\partial t, +\vec{\nabla})$
• The Dirac equation:
 $\gamma^{\mu}\partial_{\mu}\psi + im\psi = 0 \implies \gamma^{\mu}\partial_{\mu}\psi + iq\gamma^{\mu}A_{\mu}\psi + im\psi = 0$
 $(\times i) \implies i\gamma^{0}\frac{\partial\psi}{\partial t} + i\vec{\gamma}.\vec{\nabla}\psi - q\gamma^{\mu}A_{\mu}\psi - m\psi = 0$

Prof. M.A. Thomson

Michaelmas 2011

113

$$i\gamma^{0}\frac{\partial\psi}{\partial t} = \gamma^{0}\hat{H}\psi = m\psi - i\vec{\gamma}.\vec{\nabla}\psi + q\gamma^{\mu}A_{\mu}\psi$$

$$\times\gamma^{0}: \qquad \hat{H}\psi = (\gamma^{0}m - i\gamma^{0}\vec{\gamma}.\vec{\nabla})\psi + q\gamma^{0}\gamma^{\mu}A_{\mu}\psi$$

Combined rest Potential
mass + K.E. Potential

•We can identify the potential energy of a charged spin-half particle in an electromagnetic field as:

$$\hat{V}_D = q \gamma^0 \gamma^\mu A_\mu$$

(note the
$$A_0$$
 term is
just: $q\gamma^0\gamma^0A_0 = q\phi$)

• The final complication is that we have to account for the photon polarization states. $(\lambda) = (\vec{z} \cdot \vec{z} - r_0)$

$$A_{\mu} = \varepsilon_{\mu}^{(\lambda)} e^{i(\vec{p}.\vec{r}-Et)}$$

e.g. for a real photon propagating in the z direction we have two orthogonal transverse polarization states

Could equally have chosen circularly polarized states

• Previously with the example of a simple spin-less interaction we had:

$$M = \langle \psi_c | V | \psi_a \rangle \frac{1}{q^2 - m_x^2} \langle \psi_d | V | \psi_b \rangle$$

$$\frac{1}{g_a}$$

$$\frac{1}{g_b}$$

$$\frac{1}$$

•The sum over the polarizations of the VIRTUAL photon has to include longitudinal and scalar contributions, i.e. 4 polarisation states

$$\boldsymbol{\varepsilon}^{(0)} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(1)} = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(2)} = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} \qquad \boldsymbol{\varepsilon}^{(3)} = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

d gives:
$$\sum \boldsymbol{\varepsilon}_{\mu}^{\lambda} (\boldsymbol{\varepsilon}_{\mu}^{\lambda})^{*} = -\boldsymbol{g}_{\mu\nu} \qquad \int \text{This is not obvious - for the set of the set of$$

and g

P

he $\sum_{\lambda} \mathcal{E}^{\prime\prime}_{\mu} (\mathcal{E}^{\prime\prime}_{\nu})^{\prime} = -g_{\mu\nu} \qquad \{ \text{ moment just take it on trust} \}$

and the invariant matrix element becomes: (end of non-examinable $M = \left[u_e^{\dagger}(p_3)q_e\gamma^0\gamma^{\mu}u_e(p_1)\right] \frac{-g_{\mu\nu}}{q^2} \left[u_{\tau}^{\dagger}(p_4)q_{\tau}\gamma^0\gamma^{\nu}u_{\tau}(p_2)\right]$ section)

•Using the definition of the adjoint spinor
$$~~\overline{\psi}=\psi^{\dagger}\gamma^{0}$$

$$M = [\overline{u}_e(p_3)q_e\gamma^{\mu}u_e(p_1)]\frac{-g_{\mu\nu}}{q^2}[\overline{u}_{\tau}(p_4)q_{\tau}\gamma^{\nu}u_{\tau}(p_2)]$$

★ This is a remarkably simple expression ! It is shown in Appendix V of Handout 2 that $\overline{u}_1 \gamma^{\mu} u_2$ transforms as a four vector. Writing

$$j_e^{\mu} = \overline{u}_e(p_3)\gamma^{\mu}u_e(p_1)$$
 $j_{\tau}^{\nu} = \overline{u}_{\tau}(p_4)\gamma^{\nu}u_{\tau}(p_2)$
 $M = -q_eq_{\tau}\frac{j_e \cdot j_{\tau}}{q^2}$ showing that M is Lorentz Invariant

Feynman Rules for QED

• It should be remembered that the expression

$$M = [\overline{u}_e(p_3)q_e\gamma^{\mu}u_e(p_1)]\frac{-g_{\mu\nu}}{q^2}[\overline{u}_{\tau}(p_4)q_{\tau}\gamma^{\nu}u_{\tau}(p_2)]$$

hides a lot of complexity. We have summed over all possible timeorderings and summed over all polarization states of the virtual photon. If we are then presented with a new Feynman diagram we don't want to go through the full calculation again. Fortunately this isn't necessary – can just write down matrix element using a set of simple rules

e⁺ γ μ⁺ e⁻ μ⁻

- <u>Basic Feynman Rules:</u>
 - Propagator factor for each internal line (i.e. each internal virtual particle)
 - Dirac Spinor for each external line (i.e. each real incoming or outgoing particle)
 - Vertex factor for each vertex

Prof. M.A. Thomson

Michaelmas 2011

Basic Rules for QED

117

Summary

 Interaction by particle exchange naturally gives rise to Lorentz Invariant Matrix Element of the form

$$M_{fi} = \frac{g_a g_b}{q^2 - m_x^2}$$

★ Derived the basic interaction in QED taking into account the spins of the fermions and polarization of the virtual photons:

$$-iM = [\overline{u}(p_3)ie\gamma^{\mu}u(p_1)]\frac{-ig_{\mu\nu}}{q^2}[\overline{u}(p_4)ie\gamma^{\nu}u(p_2)]$$

* We now have all the elements to perform proper calculations in QED !