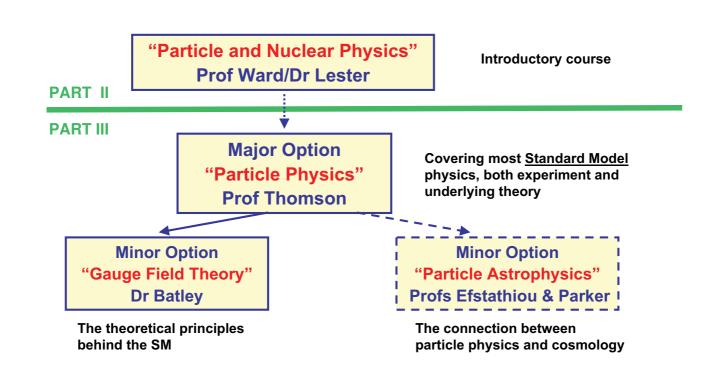


Handout 1 : Introduction

Prof. M.A. Thomson

Michaelmas 2011

Cambridge Particle Physics Courses



Course Synopsis

	Handout 1: Introduction, Decay Rates and Cross Section	ons
	Handout 2: The Dirac Equation and Spin	
	Handout 3: Interaction by Particle Exchange	
	Handout 4: Electron – Positron Annihilation	•••••
	Handout 5: Electron – Proton Scattering	
	Handout 6: Deep Inelastic Scattering	
	Handout 7: Symmetries and the Quark Model	
	Handout 8: QCD and Colour	
	Handout 9: V-A and the Weak Interaction	
	Handout 10: Leptonic Weak Interactions	
	Handout 11: Neutrinos and Neutrino Oscillations	
	Handout 12: The CKM Matrix and CP Violation	
	Handout 13: Electroweak Unification and the W and Z	
	Bosons	
	Handout 14: Tests of the Standard Model	
	Handout 15: The Higgs Boson and Beyond	
o Air	ill concentrate on the modern view of particle physics with the on how theoretical concepts relate to recent experimental means in: by the end of the course you should have a good understa both aspects of particle physics	asure

Prof. M.A. Thomson

Michaelmas 2011

Preliminaries

Web-page: www.hep.phy.cam.ac.uk/~thomson/partIIIparticles/

- All course material, old exam questions, corrections, interesting links etc.
- Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:

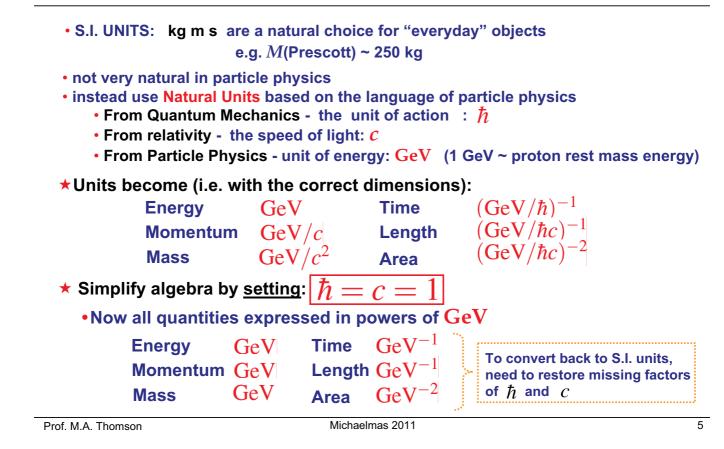
- I will derive almost all results from first principles (only a few exceptions).
- In places will include some <u>additional</u> theoretical background in nonexaminable appendices at the end of that particular handout.
- Please let me know of any typos: thomson@hep.phy.cam.ac.uk

Books:

- **★** The handouts are fairly complete, however there a number of decent books:
 - "Particle Physics", Martin and Shaw (Wiley): fairly basic but good.
 - "Introductory High Energy Physics", Perkins (Cambridge): slightly below level of the course but well written.
 - "Introduction to Elementary Physics", Griffiths (Wiley): about right level but doesn't cover the more recent material.
 - "Quarks and Leptons", Halzen & Martin (Wiley): good graduate level textbook (slightly above level of this course).

Before we start in earnest, a few words on units/notation and a very brief "Part II refresher"...

Preliminaries: Natural Units



Preliminaries: Heaviside-Lorentz Units

• Electron charge <u>defined</u> by Force equation: $F=rac{e^2}{4\piarepsilon_0 r^2}$
• In Heaviside-Lorentz units set $\mathbf{\mathcal{E}}_0=1$
and $F \rightarrow \frac{e^2}{4\pi r^2}$ NOW: electric charge has dimensions $[FL^2]^{\frac{1}{2}} = [EL]^{\frac{1}{2}} = [\hbar c]^{\frac{1}{2}}$
• Since $c = (\varepsilon_0 \mu_0)^{-\frac{1}{2}} = 1 \implies \mu_0 = 1$
$\hbar = c = \mathcal{E}_0 = \mu_0 = 1$
Unless otherwise stated, Natural Units are used throughout these handouts, $E^2 = p^2 + m^2$, $\vec{p} = \vec{k}$, etc.

Review of The Standard Model

Particle Physics is the study of:

★ MATTER: the fundamental constituents of the universe - the elementary particles

★ FORCE: the fundamental forces of nature, i.e. the interactions between the elementary particles

Try to categorise the PARTICLES and FORCES in as simple and fundamental manner possible

★Current understanding embodied in the **STANDARD MODEL**:

- Forces between particles due to exchange of particles
- Consistent with <u>all</u> current experimental data !
- But it is just a "model" with many unpredicted parameters, e.g. particle masses.
- As such it is not the ultimate theory (if such a thing exists), there are many mysteries.

Prof. M.A. Thomson

Michaelmas 2011

Matter in the Standard Model

★ In the Standard Model the fundamental "matter" is described by point-like spin-1/2 fermions

	LEPTONS				QUARKS		
		q	<i>m</i> /GeV		q	<i>m</i> /GeV	
First	e⁻	-1	0.0005	d	-1/3	0.3	
Generation	ν_1	0	≈0	u	+2/3	0.3	
Second	μ	-1	0.106	S	-1/3	0.5	
Generation	ν ₂	0	≈0	С	+2/3	1.5	
Third	τ^{-}	-1	1.77	b	-1/3	4.5	
Generation	ν ₃	0	≈0	t	+2/3	175	

The masses quoted for the quarks are the "constituent masses", i.e. the effective masses for quarks confined in a bound state

- In the SM there are <u>three generations</u> the particles in each generation are copies of each other differing <u>only</u> in mass. (not understood why three).
- The neutrinos are much lighter than all other particles (e.g. v₁ has m<3 eV)

 we now know that neutrinos have non-zero mass (don't understand why so small)

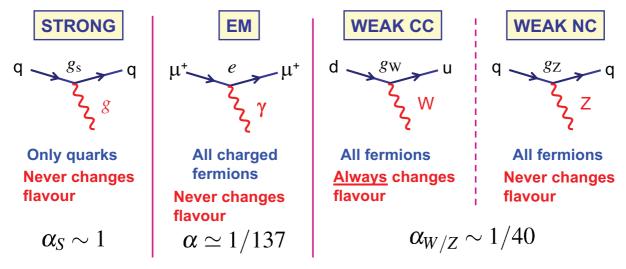
Forces in the Standard Model

+ Forces mediated by the exchange of spin-1 Gauge Bosons

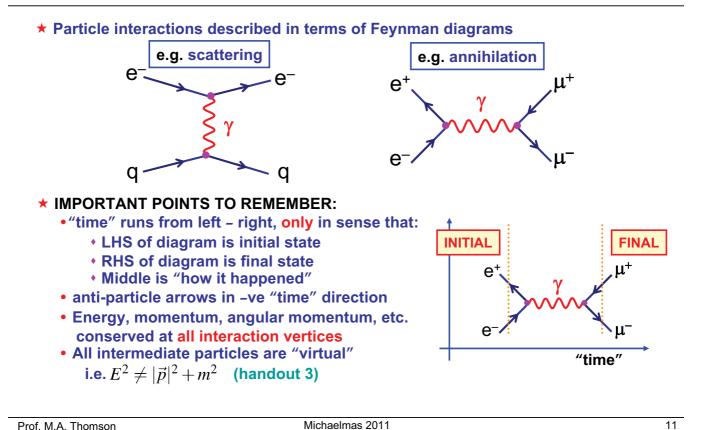
* Forces r	neglated by the	exchange of	r spii	n-1 Gaug	e Bosons
	Force	Boson(s)	JP	<i>m</i> /GeV	8
	EM (QED)	Photon γ	1-	0	
	Weak	W [±] / Z	1-	80 / 91	Ş
	Strong (QCD)	8 Gluons g	1-	0	$\sum_{i=1}^{n}$
	Gravity (?)	Graviton?	2 ⁺	0	8
Related	nental interacti I to the <u>dimens</u> QED <i>g_{em}</i>	-	ling	"constan	• 0
★ In Nat	ural Units g	$g = \sqrt{4\pi\alpha}$	(b) b	oth g and out g conta	$oldsymbol{lpha}$ are dimensionless, iins a "hidden" $\ \hbar c$)
 Convenient to express couplings in terms of α which, being genuinely dimensionless does not depend on the system of units (this is not true for the numerical value for e) 					
Prof. M.A. Thomson		Michaelmas 2	011		

Standard Model Vertices

 Interaction of gauge bosons with fermions described by SM <u>vertices</u>
 Properties of the gauge bosons and nature of the interaction between the bosons and fermions determine the properties of the interaction



Feynman Diagrams

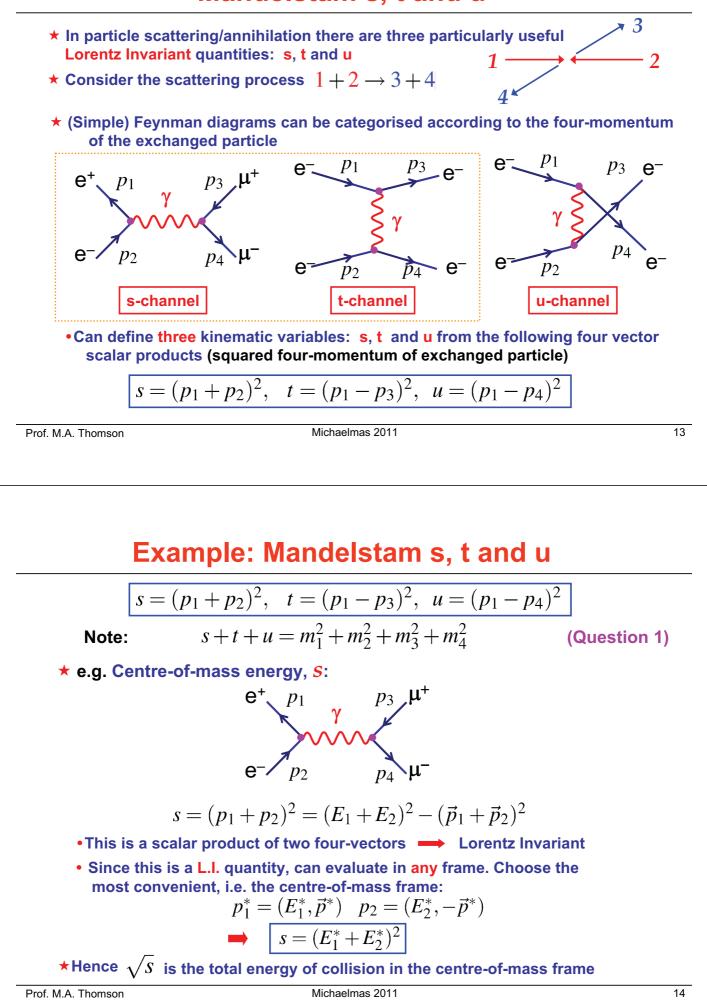


Special Relativity and 4-Vector Notation

•Will use 4-vector notation with p^0 as the time-like component, e.g. $p^{\mu} = \{E, \vec{p}\} = \{E, p_x, p_y, p_z\}$ (contravariant) $p_{\mu} = g_{\mu\nu}p^{\mu} = \{E, -\vec{p}\} = \{E, -p_x, -p_y, -p_z\}$ (covariant) $g_{\mu\nu} = g^{\mu\nu} = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$ with •In particle physics, usually deal with relativistic particles. Require all calculations to be Lorentz Invariant. L.I. guantities formed from 4-vector scalar products, e.g. $p^{\mu}p_{\mu} = E^2 - p^2 = m^2$ Invariant mass $x^{\mu}p_{\mu} = Et - \vec{p}.\vec{r}$ Phase A few words on NOTATION Four vectors written as either: p^{μ} or pFour vector scalar product: $p^{\mu}q_{\mu}$ or p.qThree vectors written as: \vec{p} Quantities evaluated in the centre of mass frame: \vec{p}^*, p^* etc.

Michaelmas 2011

Mandelstam s, t and u



From Feynman diagrams to Physics

Particle Physics = Precision Physics

- ★ Particle physics is about building fundamental theories and testing their predictions against precise experimental data
 - Dealing with fundamental particles and can make very precise theoretical predictions not complicated by dealing with many-body systems
 - Many beautiful experimental measurements
 - → precise theoretical predictions challenged by precise measurements
 - For all its flaws, the Standard Model describes all experimental data ! This is a (the?) remarkable achievement of late 20th century physics.

Requires understanding of theory and experimental data

- ***** Part II : Feynman diagrams mainly used to describe how particles interact
- ★ Part III: ◆ will use Feynman diagrams and associated Feynman rules to perform calculations for many processes
 - hopefully gain a fairly deep understanding of the Standard Model and how it explains all current data

Before we can start, need calculations for:

- Interaction cross sections;
- Particle decay rates;

Prof. M.A. Thomson

Michaelmas 2011

15

Cross Sections and Decay Rates

 In particle physics we are mainly concerned with particle <u>interactions</u> and <u>decays</u>, i.e. transitions between states

• these are the experimental observables of particle physics

Calculate transition rates from Fermi's Golden Rule

$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

- Γ_{fi} is number of transitions per unit time from initial state $|i\rangle$ to final state $\langle f|$ not Lorentz Invariant !
- *T_{fi}* is Transition Matrix Element

$$T_{fi} = \langle f | \hat{H} | i \rangle + \sum_{j \neq i} \frac{\langle f | \hat{H} | j \rangle \langle j | \hat{H} | i \rangle}{E_i - E_j} + \dots$$

 \hat{H} is the perturbing Hamiltonian

just kinematics

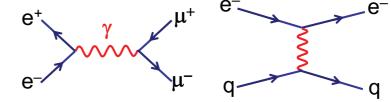
 $ho(E_f)$ is density of final states

***** Rates depend on MATRIX ELEMENT and DENSITY OF STATES

the ME contains the fundamental particle physics

The first five lectures

- ★ Aiming towards a proper calculation of decay and scattering processes Will concentrate on: • $e^+e^- \rightarrow \mu^+\mu^ e^+$ μ^+ μ^+ e^-
 - $e^-q \rightarrow e^-q$ ($e^-q \rightarrow e^-q$ to probe proton structure)



Need <u>relativistic</u> calculations of particle decay rates and cross sections:

$$\sigma = \frac{|M_{fi}|^2}{\text{flux}} \times (\text{phase space})$$

▲ Need <u>relativistic</u> treatment of spin-half particles:

Dirac Equation

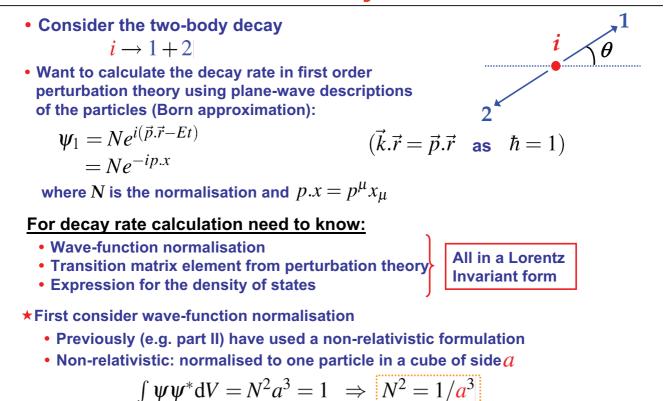
Need <u>relativistic</u> calculation of interaction Matrix Element: Interaction by particle exchange and Feynman rules

+ and a few mathematical tricks along, e.g. the Dirac Delta Function

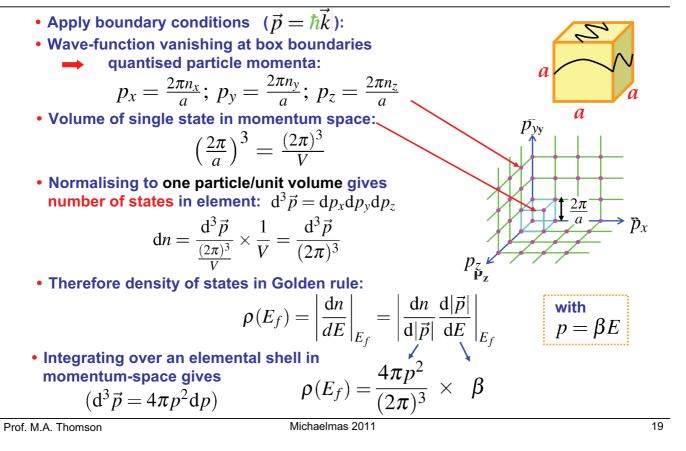
Prof. M.A. Thomson

Michaelmas 2011

Particle Decay Rates

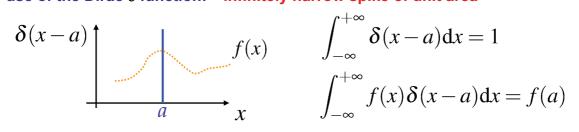


Non-relativistic Phase Space (revision)



Dirac δ Function

• In the relativistic formulation of decay rates and cross sections we will make use of the Dirac δ function: "infinitely narrow spike of unit area"



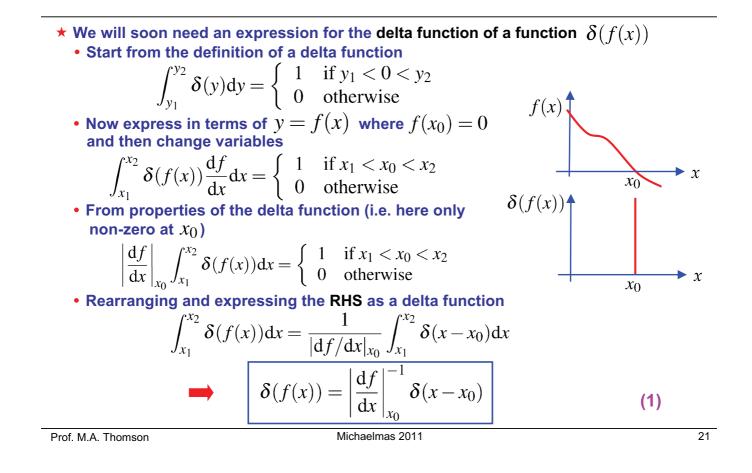
• Any function with the above properties can represent $\delta(x)$

e.g.
$$\delta(x) = \lim_{\sigma \to 0} \frac{1}{\sqrt{2\pi\sigma}} e^{-\left(\frac{x^2}{2\sigma^2}\right)}$$

(an infinitesimally narrow Gaussian)

- In relativistic quantum mechanics delta functions prove extremely useful for integrals over phase space, e.g. in the decay $a \rightarrow 1+2$
 - $\int \dots \, \delta(E_a E_1 E_2) \mathrm{d}E \qquad \text{and} \qquad \int \dots \, \delta^3(\vec{p}_a \vec{p}_1 \vec{p}_2) \mathrm{d}^3\vec{p}$

express energy and momentum conservation



The Golden Rule revisited

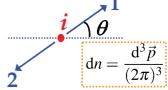
$$\Gamma_{fi} = 2\pi |T_{fi}|^2 \rho(E_f)$$

• Rewrite the expression for density of states using a delta-function

$$\rho(E_f) = \left| \frac{\mathrm{d}n}{\mathrm{d}E} \right|_{E_f} = \int \frac{\mathrm{d}n}{\mathrm{d}E} \delta(E - E_i) \mathrm{d}E \qquad \text{since } E_f = E_i$$

- Note : integrating over all final state energies but energy conservation now taken into account explicitly by delta function
- Hence the golden rule becomes: $\Gamma_{fi} = 2\pi \int |T_{fi}|^2 \delta(E_i E) dn$ the integral is over all "allowed" final states of any energy
- For dn in a two-body decay, only need to consider one particle : mom. conservation fixes the other

$$\Gamma_{fi} = 2\pi \int |T_{fi}|^2 \delta(E_i - E_1 - E_2) \frac{d^3 \vec{p}}{(2\pi)^3}$$



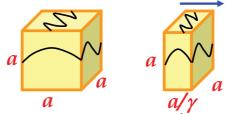
Density of states

• However, can include momentum conservation explicitly by integrating over the momenta of both particles and using another δ -fn

$$\Gamma_{fi} = (2\pi)^4 \int |T_{fi}|^2 \underbrace{\delta(E_i - E_1 - E_2)}_{\text{Energy cons.}} \underbrace{\delta_i^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2)}_{\text{Mom. cons.}} \underbrace{\frac{d^3 \vec{p}_1}{(2\pi)^3} \frac{d^3 \vec{p}_2}{(2\pi)^3}}_{\text{Density of star}}$$

Lorentz Invariant Phase Space

- In non-relativistic QM normalise to one particle/unit volume: $\int \psi^* \psi \mathrm{d} V = 1$
- When considering relativistic effects, volume ${
 m contracts}$ by ${m \gamma}\,{=}\,E/m$



- Particle density therefore increases by γ = E/m
 ★ Conclude that a relativistic invariant wave-function normalisation needs to be proportional to E particles per unit volume
- Usual convention: Normalise to 2E particles/unit volume $\int \psi'^* \psi' dV = 2E$
- Previously used Ψ normalised to 1 particle per unit volume $\int \psi^* \psi dV = 1$
- Hence $\,oldsymbol{\psi}' = (2E)^{1/2} oldsymbol{\psi}\,$ is normalised to 2E per unit volume
- Define Lorentz Invariant Matrix Element, M_{fi} , in terms of the wave-functions normalised to 2E particles per unit volume

$$M_{fi} = \langle \psi'_1.\psi'_2...|\hat{H}|...\psi'_{n-1}\psi'_n \rangle = (2E_1.2E_2.2E_3....2E_n)^{1/2}T_{fi}$$

Prof. M.A. Thomson

Michaelmas 2011

$$i \rightarrow 1+2$$

$$M_{fi} = \langle \psi'_{1} \psi'_{2} | \hat{H}' | \psi'_{i} \rangle$$

= $(2E_{i}.2E_{1}.2E_{2})^{1/2} \langle \psi_{1} \psi_{2} | \hat{H}' | \psi_{i} \rangle$
= $(2E_{i}.2E_{1}.2E_{2})^{1/2} T_{fi}$

★ Now expressing T_{fi} in terms of M_{fi} gives

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_a - \vec{p}_1 - \vec{p}_2) \frac{\mathrm{d}^3 \vec{p}_1}{(2\pi)^3 2E_1} \frac{\mathrm{d}^3 \vec{p}_2}{(2\pi)^3 2E_2}$$

Note:

•
$$M_{fi}$$
 uses relativistically normalised wave-functions. It is Lorentz Invariant

•
$$\frac{d^3 \vec{p}}{(2\pi)^3 2E}$$
 is the Lorentz Invariant Phase Space for each final state particle
the factor of $2E$ arises from the wave-function normalisation
(prove this in Question 2)

- This form of Γ_{fi} is simply a rearrangement of the original equation <u>but</u> the integral is now frame independent (i.e. L.I.)
- Γ_{fi} is inversely proportional to E_i , the energy of the decaying particle. This is exactly what one would expect from time dilation ($E_i = \gamma m$).
- Energy and momentum conservation in the delta functions

Decay Rate Calculations

$$\Gamma_{fi} = \frac{(2\pi)^4}{2E_i} \int |M_{fi}|^2 \delta(E_i - E_1 - E_2) \delta^3(\vec{p}_i - \vec{p}_1 - \vec{p}_2) \frac{d^3\vec{p}_1}{(2\pi)^3 2E_1} \frac{d^3\vec{p}_2}{(2\pi)^3 2E_2}$$

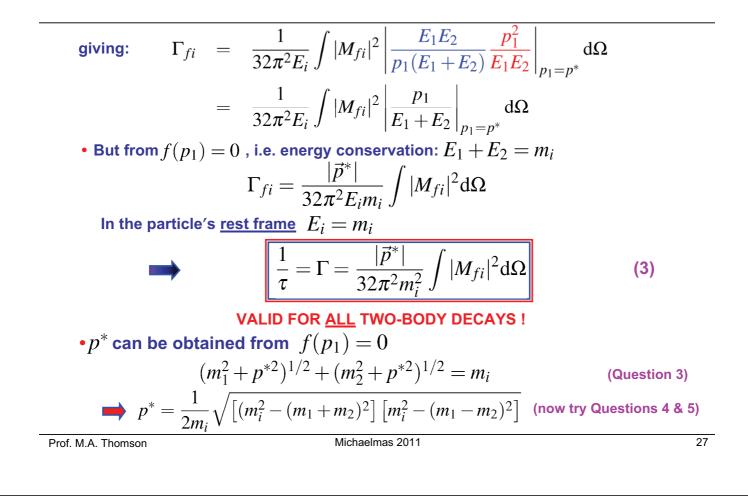
$$\bullet \text{ Because the integral is Lorentz invariant (i.e. frame independent) it can be evaluated in any frame we choose. The C.o.M. frame is most convenient
$$\bullet \text{ In the C.o.M. frame } E_i = m_i \quad \text{and } \vec{p}_i = 0 \quad \Longrightarrow \\ \Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \delta^3(\vec{p}_1 + \vec{p}_2) \frac{d^3\vec{p}_1}{2E_1} \frac{d^3\vec{p}_2}{2E_2}$$

$$\bullet \text{ Integrating over } \vec{p}_2 \text{ using the } \delta\text{-function:} \\ \Rightarrow \Gamma_{fi} = \frac{1}{8\pi^2 E_i} \int |M_{fi}|^2 \delta(m_i - E_1 - E_2) \frac{d^3\vec{p}_1}{4E_1E_2} \\ \frac{1}{2} \frac{$$$$

• Which can be written $\Gamma_{fi} = \frac{1}{32\pi^2 F_i} \int |M_{fi}|^2 g(p_1) \delta(f(p_1)) dp_1 d\Omega$ (2) in the form where $g(p_1) = p_1^2/(E_1E_2) = p_1^2(m_1^2 + p_1^2)^{-1/2}(m_2^2 + p_1^2)^{-1/2}$ p^* ,1 $f(p_1) = m_i - (m_1^2 + p_1^2)^{1/2} - (m_2^2 + p_1^2)^{1/2}$ and <u>Note:</u> • $\delta(f(p_1))$ imposes energy conservation. • $f(p_1) = 0$ determines the C.o.M momenta of 2^{*}*p** the two decay products i.e. $f(p_1) = 0$ for $p_1 = p^*$ **★** Eq. (2) can be integrated using the property of δ – function derived earlier (eq. (1)) $\int g(p_1)\delta(f(p_1))dp_1 = \frac{1}{|df/dp_1|_{p^*}} \int g(p_1)\delta(p_1 - p^*)dp_1 = \frac{g(p^*)}{|df/dp_1|_{p^*}}$ where p^* is the value for which $f(p^*) = 0$ • All that remains is to evaluate df/dp_1 $\frac{\mathrm{d}f}{\mathrm{d}p_1} = -\frac{p_1}{(m_1^2 + p_1^2)^{1/2}} - \frac{p_1}{(m_2^2 + p_1^2)^{1/2}} = -\frac{p_1}{E_1} - \frac{p_1}{E_2} = -p_1 \frac{E_1 + E_2}{E_1 E_2}$

Prof. M.A. Thomson

Michaelmas 2011



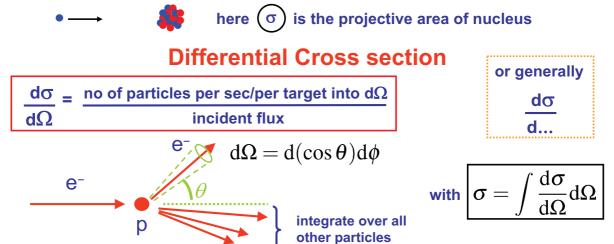
Cross section definition

 $\sigma = \frac{\text{no of interactions per unit time per target}}{\text{incident flux}}$

Flux = number of incident particles/ unit area/unit time

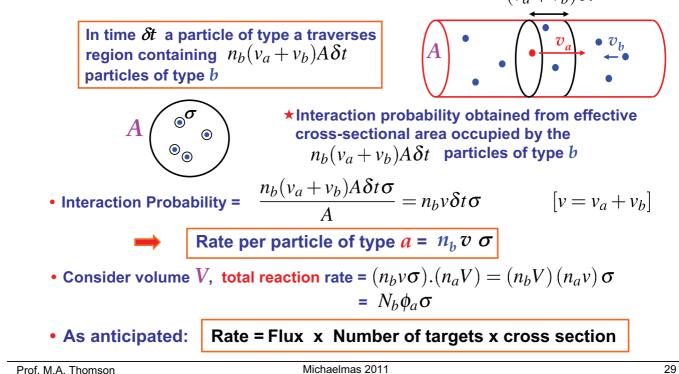
• The "cross section", σ, can be thought of as the <u>effective</u> crosssectional area of the target particles for the interaction to occur.

 In general this has nothing to do with the physical size of the target although there are exceptions, e.g. neutron absorption

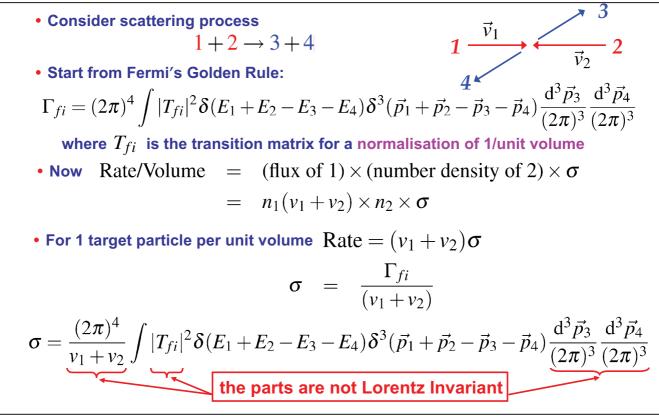


example

• Consider a single particle of type a with velocity, v_a , traversing a region of area A containing n_b particles of type b per unit volume $(v_a + v_b)\delta t$



Cross Section Calculations



• To obtain a Lorentz Invariant form use wave-functions normalised to 2E particles per unit volume $\boldsymbol{\psi}' = (2E)^{1/2} \boldsymbol{\psi}$

• Again define L.I. Matrix element $M_{fi}=(2E_1\,2E_2\,2E_3\,2E_4)^{1/2}T_{fi}$

$$\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2(v_1 + v_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p_1} + \vec{p_2} - \vec{p_3} - \vec{p_4}) \frac{\mathrm{d}^3 \vec{p_3}}{2E_3} \frac{\mathrm{d}^3 \vec{p_4}}{2E_4}$$

- The integral is now written in a Lorentz invariant form
- The quantity $F = 2E_1 2E_2(v_1 + v_1)$ can be written in terms of a four-vector scalar product and is therefore also Lorentz Invariant (the Lorentz Inv. Flux)

$$F = 4 \left[(p_1^{\mu} p_{2\mu})^2 - m_1^2 m_2^2 \right]^{1/2}$$
 (see appendix I)

· Consequently cross section is a Lorentz Invariant quantity

Two special cases of Lorentz Invariant Flux:

 Centre-of-Mass Frame Target (particle 2) at rest $= 4E_1E_2(v_1+v_2)$ $F = 4E_1E_2(v_1+v_2)$ F $= 4E_1E_2(|\vec{p}^*|/E_1 + |\vec{p}^*|/E_2)$ $= 4E_1m_2v_1$ $= 4|\vec{p}^*|(E_1+E_2)|$ $= 4E_1m_2(|\vec{p}_1|/E_1)$ $= 4|\vec{p}^*|\sqrt{s}$ $= 4m_2 |\vec{p}_1|$ 31

Prof. M.A. Thomson

Michaelmas 2011

2→2 Body Scattering in C.o.M. Frame

• We will now apply above Lorentz Invariant formula for the interaction cross section to the most common cases used in the course. First consider
$$2 \rightarrow 2$$
 scattering in C.o.M. frame
• Start from
 $\sigma = \frac{(2\pi)^{-2}}{2E_1 2E_2(v_1 + v_2)} \int |M_{fi}|^2 \delta(E_1 + E_2 - E_3 - E_4) \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \frac{d^3\vec{p}_3}{2E_3} \frac{d^3\vec{p}_4}{2E_4} |$
• Here $\vec{p}_1 + \vec{p}_2 = 0$ and $E_1 + E_2 = \sqrt{s}$
 $\Rightarrow \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_i^*|\sqrt{s}} \int |M_{fi}|^2 \delta(\sqrt{s} - E_3 - E_4) \delta^3(\vec{p}_3 + \vec{p}_4) \frac{d^3\vec{p}_3}{2E_3} \frac{d^3\vec{p}_4}{2E_4} |$
* The integral is exactly the same integral that appeared in the particle decay calculation but with m_a replaced by \sqrt{s}
 $\Rightarrow \sigma = \frac{(2\pi)^{-2}}{4|\vec{p}_i^*|\sqrt{s}} \frac{|\vec{p}_f^*|}{\sqrt{s}} \int |M_{fi}|^2 d\Omega^*$

- In the case of elastic scattering $|ec{p}_i^*| = |ec{p}_f^*|$

$$\sigma_{\text{elastic}} = \frac{1}{64\pi^2 s} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$

• For calculating the total cross-section (which is Lorentz Invariant) the result on the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating the differential cross section in a rest frame other than the C.o.M:

1

e-

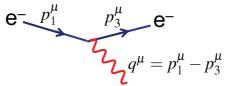
 $t = q^2 = (p_1 - p_3)^2$

Product of four-vectors therefore L.I.

$$\mathrm{d}\sigma \quad = \quad \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} |M_{fi}|^2 \mathrm{d}\Omega^*$$

because the angles in $\,\mathrm{d}\Omega^*=\mathrm{d}(\cos heta^*)\mathrm{d}\phi^*\,$ refer to the C.o.M frame

- For the last calculation in this section, we need to find a L.I. expression fo ${
 m d}\sigma$
- ★ Start by expressing $d\Omega^*$ in terms of Mandelstam *t* i.e. the square of the four-momentum transfer

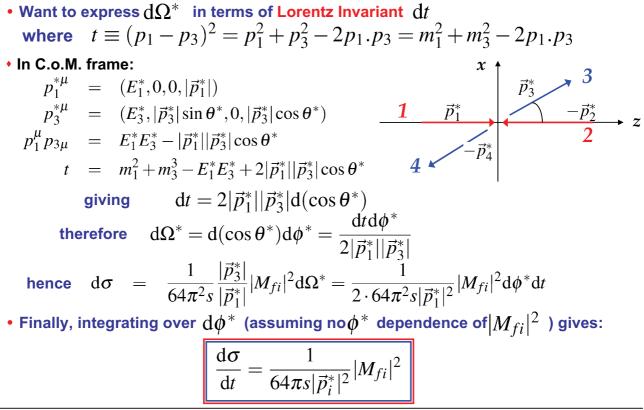


Prof. M.A. Thomson

Michaelmas 2011

33

e- 3



Lorentz Invariant differential cross section

• All quantities in the expression for $d\sigma/dt$ are Lorentz Invariant and therefore, it applies to any rest frame. It should be noted that $|\vec{p}_i^*|^2$ is a constant, fixed by energy/momentum conservation

$$|\vec{p}_i^*|^2 = \frac{1}{4s}[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]$$

• As an example of how to use the invariant expression $d\sigma/dt$ we will consider elastic scattering in the laboratory frame in the limit where we can neglect the mass of the incoming particle $E_1 \gg m_1$

$$E_1 \qquad m_2 \qquad \text{e.g. electron or neutrino scattering}$$

In this limit
$$|\vec{p}_i^*|^2 = \frac{(s-m_2)^2}{4s}$$

$$\frac{d\sigma}{dt} = \frac{1}{16\pi(s - m_2^2)^2} |M_{fi}|^2 \qquad (m_1 = 0)$$

Prof. M.A. Thomson

Michaelmas 2011

35

2→2 Body Scattering in Lab. Frame

- The other commonly occurring case is scattering from a fixed target in the Laboratory Frame (e.g. electron-proton scattering)
- First take the case of elastic scattering at high energy where the mass of the incoming particles can be neglected: $m_1 = m_3 = 0$, $m_2 = m_4 = M$

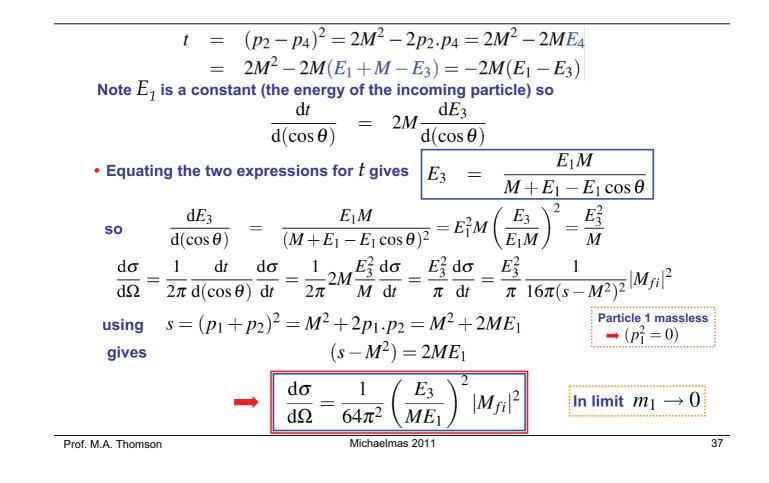
$$(E_1, |\vec{p}_1|) = 2 \quad (E_3, |\vec{p}_3|) = 3 \quad \text{e.g.} \quad 1 \text{ e}^{-3}$$

$$(E_4, |\vec{p}_4|) = 4 \quad 2 \quad X = 4$$
• Wish to express the cross section in terms of scattering angle of the e⁻

$$d\Omega = 2\pi d(\cos \theta)$$
therefore
$$\frac{d\sigma}{d\Omega} = \frac{d\sigma}{dt} \frac{dt}{d\Omega} = \frac{1}{2\pi} \frac{dt}{d(\cos \theta)} \frac{d\sigma}{dt} \quad \text{Integrating over } d\phi$$
• The rest is some rather tedious algebra.... start from four-momenta

$$p_1 = (E_1, 0, 0, E_1), \quad p_2 = (M, 0, 0, 0), \quad p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), \quad p_4 = (E_4, \vec{p}_4)$$
so here
$$t = (p_1 - p_3)^2 = -2p_1 \cdot p_3 = -2E_1E_3(1 - \cos \theta)$$
But from (E,p) conservation
$$p_1 + p_2 = p_3 + p_4$$

and, therefore, can also express t in terms of particles 2 and 4



In this equation, E_3 is a function of θ : $E_3 = \frac{E_1 M}{M + E_1 - E_1 \cos \theta}$ giving $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M + E_1 - E_1 \cos \theta}\right)^2 |M_{fi}|^2 \qquad (m_1 = 0)$

General form for 2→2 Body Scattering in Lab. Frame ★ The calculation of the differential cross section for the case where m₁ can not be neglected is longer and contains no more "physics" (see appendix II). It gives:

$$\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{p_1 m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

Again there is only one independent variable, θ , which can be seen from conservation of energy

$$E_1 + m_2 = \sqrt{|\vec{p}_3|^2 + m_3^2} + \sqrt{|\vec{p}_1|^2 + |\vec{p}_3|^2 - 2|\vec{p}_1||\vec{p}_3|\cos\theta} + m_4^2$$

i.e. $|\vec{p}_3|$ is a function of θ $\vec{p}_4 = \vec{p}_1 - \vec{p}_3$

Summary

 ★ Used a Lorentz invariant formulation of Fermi's Golden Rule to derive decay rates and cross-sections in terms of the Lorentz Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:

*****Particle decay:

$$\Gamma = \frac{|\vec{p}^*|}{32\pi^2 m_i^2} \int |M_{fi}|^2 \mathrm{d}\Omega \qquad \text{Where } p^* \text{ is a function of particle masses} \\ p^* = \frac{1}{2m_i} \sqrt{\left[(m_i^2 - (m_1 + m_2)^2\right] \left[m_i^2 - (m_1 - m_2)^2\right]}$$

★Scattering cross section in C.o.M. frame:

$$\sigma = \frac{1}{64\pi^2 s} \frac{|\vec{p}_f^*|}{|\vec{p}_i^*|} \int |M_{fi}|^2 \mathrm{d}\Omega^*$$

*****Invariant differential cross section (valid in all frames):

$d\sigma$ 1 $ M_{\star} ^2$	$ \vec{p}_i^* ^2 = \frac{1}{4s}[s - (m_1 + m_2)^2][s - (m_1 - m_2)^2]$
$\frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{1}{64\pi s \vec{p}_i^* ^2} M_{fi} ^2$	$\int p_i + \frac{1}{4s} \left[s - (m_1 + m_2) \right] \left[s - (m_1 - m_2) \right]$

Prof. M.A. Thomson

Michaelmas 2011

39

Summary cont.

★ Differential cross section in the lab. frame $(m_1=0)$ $\frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{E_3}{ME_1}\right)^2 |M_{fi}|^2 \iff \frac{d\sigma}{d\Omega} = \frac{1}{64\pi^2} \left(\frac{1}{M+E_1-E_1\cos\theta}\right)^2 |M_{fi}|^2$

★Differential cross section in the lab. frame $(m_1 \neq 0)$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{|\vec{p}_1|m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$

with $E_1 + m_2 = \sqrt{|\vec{p}_3|^2 + m_3^2} + \sqrt{|\vec{p}_1|^2 + |\vec{p}_3|^2 - 2|\vec{p}_1||\vec{p}_3|\cos\theta + m_4^2}$

Summary of the summary:

★Have now dealt with kinematics of particle decays and cross sections

- *****The fundamental particle physics is in the matrix element
- ★The above equations are the basis for all calculations that follow

Appendix I : Lorentz Invariant Flux

a –

NON-EXAMINABLE

— b

Collinear collision:

$$V_a, \vec{p}_a \qquad V_b, \vec{p}_b$$

$$F = 2E_a 2E_b(v_a + v_b) = 4E_a E_b \left(\frac{|\vec{p}_a|}{E_a} + \frac{|\vec{p}_b|}{E_b}\right)$$

$$= 4(|\vec{p}_a|E_b + |\vec{p}_b|E_a)$$

To show this is Lorentz invariant, first consider

$$p_{a}.p_{b} = p_{a}^{\mu}p_{b\mu} = E_{a}E_{b} - \vec{p}_{a}.\vec{p}_{b} = E_{a}E_{b} + |\vec{p}_{a}||\vec{p}_{b}|$$
Giving
$$F^{2}/16 - (p_{a}^{\mu}p_{b\mu})^{2} = (|\vec{p}_{a}|E_{b} + |\vec{p}_{b}|E_{a})^{2} - (E_{a}E_{b} + |\vec{p}_{a}||\vec{p}_{b}|)^{2}$$

$$= |\vec{p}_{a}|^{2}(E_{b}^{2} - |\vec{p}_{b}|^{2}) + E_{a}^{2}(|\vec{p}_{b}|^{2} - E_{b}^{2})$$

$$= |\vec{p}_{a}|^{2}m_{b}^{2} - E_{a}^{2}m_{b}^{2}$$

$$= -m_{a}^{2}m_{b}^{2}$$

$$F = 4\left[(p_{a}^{\mu}p_{b\mu})^{2} - m_{a}^{2}m_{b}^{2}\right]^{1/2}$$

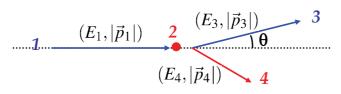
Prof. M.A. Thomson

Michaelmas 2011

41

Appendix II : general 2→2 Body Scattering in lab frame

NON-EXAMINABLE



$$p_1 = (E_1, 0, 0, |\vec{p}_1|), \ p_2 = (M, 0, 0, 0), \ p_3 = (E_3, E_3 \sin \theta, 0, E_3 \cos \theta), \ p_4 = (E_4, \vec{p}_4)$$

again
$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}\sigma}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}\Omega} = \frac{1}{2\pi}\frac{\mathrm{d}t}{\mathrm{d}(\cos\theta)}\frac{\mathrm{d}\sigma}{\mathrm{d}t}$$

But now the invariant quantity *t*:

$$t = (p_2 - p_4)^2 = m_2^2 + m_4^2 - 2p_2 \cdot p_4 = m_2^2 + m_4^2 - 2m_2 E_4$$

= $m_2^2 + m_4^2 - 2m_2(E_1 + m_2 - E_3)$
 $\rightarrow \frac{dt}{d(\cos \theta)} = 2m_2 \frac{dE_3}{d(\cos \theta)}$

Which gives	$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{\mathrm{d}\sigma}{\mathrm{d}t}$	
To determine d	E ₃ /d(cos $ heta$), first differentiate $E_3^2 - ec{p}_3 ^2 = m_3^2$	
	$2E_3 \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} = 2 \vec{p}_3 \frac{\mathrm{d} \vec{p}_3 }{\mathrm{d}(\cos\theta)}$	(All.1)
Then equate	$t=(p_1-p_3)^2=(p_4-p_2)^2$ to give	
$m_1^2 + m_3^2 - 2$	$2(E_1E_3 - \vec{p}_1 \vec{p}_3 \cos\theta) = m_4^2 + m_2^2 - 2m_2(E_1 + m_2)$	$(E_2 - E_3)$
Differentiate w	rt. $\cos\theta$	
	$(E_1 + m_2)\frac{\mathrm{d}E_3}{\mathrm{d}\cos\theta} - \vec{p}_1 \cos\theta\frac{\mathrm{d} \vec{p}_3 }{\mathrm{d}\cos\theta} = \vec{p}_1 \vec{p}_3 $	
Using (1) 🛁	$\frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} = \frac{ \vec{p}_1 \vec{p}_3 ^2}{ \vec{p}_3 (E_1+m_2)-E_3 \vec{p}_1 \cos\theta}$	(All.2)
$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$ =	$= \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{\mathrm{d}\sigma}{\mathrm{d}t} = \frac{m_2}{\pi} \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{1}{64\pi s \vec{p}_i^* ^2} M_{fi} ^2$	
rof. M.A. Thomson	Michaelmas 2011	

It is easy to show $ert ec{p}_i^* ert \sqrt{s} = m_2 ert ec{p}_1 ert$

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{\mathrm{d}E_3}{\mathrm{d}(\cos\theta)} \frac{m_2}{64\pi^2 m_2^2 |\vec{p}_1|^2} |M_{fi}|^2$$

and using (All.2) obtain

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{64\pi^2} \cdot \frac{1}{p_1 m_1} \cdot \frac{|\vec{p}_3|^2}{|\vec{p}_3|(E_1 + m_2) - E_3|\vec{p}_1|\cos\theta} \cdot |M_{fi}|^2$$