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Handout 1 : Introduction 
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Cambridge Particle Physics Courses

“Particle and Nuclear Physics”
Prof Ward/Dr Lester

PART  II

PART III
Major Option

“Particle Physics”
Prof Thomson

Minor Option
“Gauge Field Theory”

Dr Batley

Introductory course

Covering most Standard Model
physics, both experiment and 
underlying theory

Minor Option
“Particle Astrophysics”

Profs Efstathiou & Parker 

The theoretical principles 
behind the SM

The connection between 
particle physics and cosmology
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Course Synopsis
Handout    1: Introduction, Decay Rates and Cross Sections 
Handout    2: The Dirac Equation and Spin
Handout    3: Interaction by Particle Exchange
Handout    4: Electron – Positron Annihilation
Handout    5: Electron – Proton Scattering
Handout    6: Deep Inelastic Scattering
Handout    7: Symmetries and the Quark Model
Handout    8: QCD and Colour
Handout    9: V-A and the Weak Interaction
Handout  10: Leptonic Weak Interactions
Handout  11: Neutrinos and Neutrino Oscillations
Handout  12: The CKM Matrix and CP Violation
Handout  13: Electroweak Unification and the W and Z Bosons
Handout  14: Tests of the Standard Model
Handout  15: The Higgs Boson and Beyond

� Will concentrate on the modern view of particle physics with the emphasis 
on how theoretical concepts relate to recent experimental measurements

� Aim: by the end of the course you should have a good understanding of
both aspects of particle physics
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Preliminaries
Web-page: www.hep.phy.cam.ac.uk/~thomson/partIIIparticles/
• All course material, old exam questions, corrections, interesting links etc.
• Detailed answers will posted after the supervisions (password protected)

Format of Lectures/Handouts:
• l will derive almost all results from first principles (only a few exceptions). 
• In places will include some additional theoretical background in non-

examinable appendices at the end of that particular handout.    
• Please let me know of any typos:   thomson@hep.phy.cam.ac.uk

Books:
� The handouts are fairly complete, however there a number of decent books:

• “Particle Physics”, Martin and Shaw (Wiley): fairly basic but good.
• “Introductory High Energy Physics”, Perkins (Cambridge): slightly below 

level of the course but well written. 
• “Introduction to Elementary Physics”, Griffiths (Wiley): about right level

but doesn’t cover the more recent material.
• “Quarks and Leptons”, Halzen & Martin (Wiley): good graduate level 

textbook (slightly above level of this course). 
Before we start in earnest, a few words on units/notation and a very brief 
“Part II refresher”…
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Preliminaries: Natural Units
• S.I. UNITS:   kg m s  are a natural choice for “everyday” objects

e.g. M(Prescott) ~ 250 kg
• not very natural in particle physics
• instead use Natural Units based on the language of particle physics

• From Quantum Mechanics - the  unit of action   :  
• From relativity - the speed of light: c
• From Particle Physics - unit of energy: GeV (1 GeV ~ proton rest mass energy)

�Units become (i.e. with the correct dimensions): 
Energy         
Momentum        
Mass        

Time           
Length           
Area           

Energy         
Momentum        
Mass        

Time           
Length           
Area           

•Now all quantities expressed in powers of GeV
� Simplify algebra by setting:

To convert back to S.I. units, 
need to restore missing factors
of       and    
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Preliminaries: Heaviside-Lorentz Units

• Electron charge defined by Force equation:

• In Heaviside-Lorentz units set    

and

• Since  

NOW: electric charge 
has dimensions 

Unless otherwise stated, Natural Units are used throughout these
handouts,                             ,             ,  etc.
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Review of The Standard Model
Particle Physics is the study of:

� MATTER: the fundamental constituents of the universe
- the elementary particles 

� FORCE:   the fundamental forces of nature, i.e. the interactions
between the elementary particles 

Try to categorise the PARTICLES and FORCES in as simple and 
fundamental manner possible

�Current understanding embodied in the STANDARD MODEL:
• Forces between particles due to exchange of particles
• Consistent with all current experimental data !
• But it is just a “model” with many unpredicted parameters,

e.g. particle masses.
• As such it is not the ultimate theory (if such a thing exists), there

are many mysteries.
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Matter in the Standard Model 
� In the Standard Model the fundamental “matter” is described by point-like

spin-1/2 fermions
LEPTONS QUARKS
q m/GeV q m/GeV

e– –1 0.0005 d –1/3 0.3

�1 0 �0 u +2/3 0.3

�– –1 0.106 s –1/3 0.5

�2 0 �0 c +2/3 1.5

�– –1 1.77 b –1/3 4.5

�3 0 �0 t +2/3 175
Third
Generation

Second
Generation

First
Generation

The masses quoted for the
quarks are the “constituent 
masses”, i.e. the effective 
masses for quarks confined 
in a bound state

• In the SM there are three generations – the particles in each generation 
are copies of each other differing only in mass.  (not understood why three). 

• The neutrinos are much lighter than all other particles (e.g. �1 has m<3 eV)
– we now know that neutrinos have non-zero mass (don’t understand why 
so small)
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Forces in the Standard Model
�Forces mediated by the exchange of spin-1 Gauge Bosons

Force Boson(s) JP m/GeV
EM (QED) Photon   � 1– 0

Weak W± / Z 1– 80 / 91
Strong (QCD) 8 Gluons  g 1– 0

Gravity (?) Graviton? 2+ 0

g

• Fundamental interaction strength is given by charge g.
• Related to the dimensionless coupling “constant”

g

(both g and � are dimensionless,
but g contains a “hidden” ) 

e.g. QED 

� In Natural Units
� Convenient to express couplings in terms of ���which, being 

genuinely dimensionless does not depend on the system of 
units (this is not true for the numerical value for e)    
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Standard Model Vertices
�Interaction of gauge bosons with fermions described by SM vertices
�Properties of the gauge bosons and nature of the interaction between

the bosons and fermions determine the properties of the interaction

STRONG EM WEAK CC WEAK NC

Never changes 
flavour Never changes 

flavour 

Always changes 
flavour 

Never changes 
flavour 

q q

g

d

W

u q q

Z

�+

�

�+

Only quarks All charged 
fermions 

All fermions All fermions 
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Feynman Diagrams
� Particle interactions described in terms of Feynman diagrams

e.g. scattering e.g. annihilation

e– �–

e+ ��
�

e–e–

q q

�

e– �–

e+ ��
�

“time”

INITIAL FINAL

� IMPORTANT POINTS TO REMEMBER:
•“time” runs from left – right, only in sense that:

� LHS of diagram is initial state
� RHS of diagram is final state
� Middle is “how it happened”

• anti-particle arrows in –ve “time” direction
• Energy, momentum, angular momentum, etc. 

conserved at all interaction vertices
• All intermediate particles are “virtual”

i.e.                             (handout 3)

Special Relativity and 4-Vector Notation
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•Will use 4-vector notation with as the time-like component, e.g.

(contravariant)

(covariant)

•In particle physics, usually deal with relativistic particles. Require all
calculations to be Lorentz Invariant.  L.I. quantities formed from 4-vector
scalar products, e.g.   

Invariant mass
Phase

with

•A few words on NOTATION

Three vectors written as:
Four vector scalar product:
Four vectors written as either: oror

Quantities evaluated in the centre of mass frame: 

or

etc.



Prof. M.A. Thomson Michaelmas 2010 13

Mandelstam s, t and u

1 2

4

3

� Consider the scattering process

� In particle scattering/annihilation there are three particularly useful
Lorentz Invariant quantities:  s, t and u

e–e–

e– e–

�

� (Simple) Feynman diagrams can be categorised according to the four-momentum
of the exchanged particle 

e– �–

e+ ��
�

e–e–

•Can define three kinematic variables:  s, t and u from the following four vector 
scalar products (four-momentum of exchanged particle)

e– e–

�

s-channel t-channel u-channel
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Example: Mandelstam s, t and u

Note: (Question 1)

� e.g. Centre-of-mass energy, s:

e– �–

e+ ��
�

• Since this is a L.I. quantity, can evaluate in any frame. Choose the 
most convenient, i.e. the centre-of-mass frame:    

•This is a scalar product of two four-vectors            Lorentz Invariant

�Hence is the total energy of collision in the centre-of-mass frame
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From Feynman diagrams to Physics

� Particle physics is about building fundamental theories and testing their
predictions against precise experimental data

Particle Physics = Precision Physics

•Dealing with fundamental particles and can make very precise theoretical
predictions – not complicated by dealing with many-body systems

•Many beautiful experimental measurements 
precise theoretical predictions challenged by precise measurements 

•For all its flaws, the Standard Model describes all experimental data !
This is a (the?) remarkable achievement of late 20th century physics.

� Part II : Feynman diagrams mainly used to describe how particles interact 
� Part III:

Requires understanding of theory and experimental data

� will use Feynman diagrams and associated Feynman rules to 
perform calculations for many processes

� hopefully gain a fairly deep understanding of the Standard Model 
and how it explains all current data

Before we can start, need calculations for:
• Interaction cross sections; 
• Particle decay rates;
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Cross Sections and Decay Rates
• In particle physics we are mainly concerned 

with particle interactions and decays, i.e.
transitions between states

• Calculate transition rates from Fermi’s Golden Rule

is Transition Matrix Element

is density of final states 

is number of transitions per unit time from initial state
to final state                  – not Lorentz Invariant !

� Rates depend on MATRIX ELEMENT and DENSITY OF STATES

the ME contains the fundamental particle physics 

� these are the experimental observables of particle physics

just kinematics 

is the perturbing
Hamiltonian
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The first five lectures

e– �–

e+ ���

� Aiming towards a proper calculation of decay and scattering processes
Will concentrate on: e– e–

qq

• e+e– � �+�–

• e– q � e– q
(e– q�e– q to probe
proton structure)

� Need relativistic calculations of particle decay rates and cross sections: 

� Need relativistic calculation of interaction Matrix Element: 
Interaction by particle exchange and Feynman rules

� Need relativistic treatment of spin-half particles:
Dirac Equation

+ and a few mathematical tricks along, e.g. the Dirac Delta Function 

Prof. M.A. Thomson Michaelmas 2010 18

Particle Decay Rates

i
1

2

�
• Consider the two-body decay 

• Want to calculate the decay rate in first order 
perturbation theory using plane-wave descriptions 
of the particles (Born approximation):

as

where N is the normalisation and 

For decay rate calculation need to know:
• Wave-function normalisation
• Transition matrix element from perturbation theory
• Expression for the density of states

All in a Lorentz 
Invariant form

�First consider wave-function normalisation 
• Previously (e.g. part II) have used a non-relativistic formulation
• Non-relativistic: normalised to one particle in a cube of side 



Non-relativistic Phase Space (revision)
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a

a
a

py

px

pz

• Volume of single state in momentum space: 

• Normalising to one particle/unit volume gives
number of states in element: 

• Integrating over an elemental shell in 
momentum-space gives 

• Apply boundary conditions   (               ):

• Therefore density of states in Golden rule:

• Wave-function vanishing at box boundaries 
quantised particle momenta: 

with
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Dirac 	 Function
• In the relativistic formulation of decay rates and cross sections we will make

use of the Dirac 	 function:  “infinitely narrow spike of unit area”

a

• Any function with the above properties can represent 

e.g. (an infinitesimally narrow Gaussian) 

• In relativistic quantum mechanics delta functions prove extremely useful  
for integrals over phase space, e.g. in the decay

and

express energy and momentum conservation
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• Start from the definition of a delta function

• From properties of the delta function (i.e. here only 
non-zero at      )

• Rearranging and expressing the RHS as a delta function 

� We will soon need an expression for the delta function of a function

(1)

• Now express in terms of                     where 

x

x

and then change variables
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The Golden Rule revisited

• Rewrite the expression for density of states using a delta-function 

Note : integrating over all final state energies but energy conservation now 
taken into account explicitly by delta function 

• Hence the golden rule becomes: 

the integral is over all “allowed” final states of any energy

i
1

2

�
• For dn in a two-body decay, only need to consider

one particle : mom. conservation fixes the other

• However, can include momentum conservation explicitly by integrating over 
the momenta of both particles and using another 	-fn

Energy cons. Mom. cons. Density of states

since



Lorentz Invariant Phase Space
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• In non-relativistic QM normalise to one particle/unit volume:
• When considering relativistic effects, volume contracts by 

a

a
a

a/�

a
a

• Particle density therefore increases by 
� Conclude that a relativistic invariant wave-function normalisation 

needs to be proportional to E particles per unit volume

• Usual convention: Normalise to 2E particles/unit volume
• Previously   

• Define Lorentz Invariant Matrix Element,         , in terms of the wave-functions 
normalised to          particles per unit volume  

used       normalised to 1 particle per unit volume
• Hence is normalised to       per unit volume
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• For the two body decay

Note:
uses relativistically normalised wave-functions. It is Lorentz Invariant  

This form of  is simply a rearrangement of the original equation
but the integral is now frame independent (i.e. L.I.)

is the Lorentz Invariant Phase Space for each final state particle             
the factor of arises from the wave-function normalisation  

� Now expressing  in terms of          gives

(prove this in Question 2)

is inversely proportional to Ei, the energy of the decaying particle. This is 
exactly what one would expect from time dilation (Ei = �m).

Energy and momentum conservation in the delta functions
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Decay Rate Calculations

� Because the integral is Lorentz invariant (i.e. frame independent) it can be 
evaluated in any frame we choose. The C.o.M. frame is most convenient 

i
1

2

�• Integrating over       using the 	-function:  

now since the 	-function imposes 

• Writing  

• In the C.o.M. frame                    and 

For convenience, here
is written as  
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• Which can be written
in the form 

(2)

where 

i
1

2

�
and 

Note: • imposes energy conservation. 

• determines the C.o.M momenta of  
the two decay products   

i.e.                      for  
� Eq. (2) can be integrated using the property of 	�– function derived earlier (eq. (1)) 

where       is the value for which 

• All that remains is to evaluate                 
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giving:

• can be obtained from 

• But from , i.e. energy conservation:

(Question 3)

(now try Questions 4 & 5)

VALID FOR ALL TWO-BODY DECAYS !

In the particle’s rest frame

(3)
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Cross section definition

• The “cross section”, 
,  can be thought of as the effective cross-
sectional area of the target particles for the interaction to occur. 

• In general this has nothing to do with the physical size of the
target although there are exceptions, e.g. neutron absorption 


here          is the projective area of nucleus 

no of interactions per unit time/per target 
incident flux 


 =

Differential Cross section
no of particles per sec/per target into d�

incident flux  
=d


d�

integrate over all 
other particles

�e–
e–

p

Flux = number of
incident particles/
unit area/unit time

d

d���

or generally

with
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• Consider  a single particle of type a with velocity, va, traversing a region of area 
A containing nb particles of type b per unit volume 

vaA vb
In time 	t a particle of type a traverses 
region containing
particles of type b

A

 �Interaction probability obtained from effective

cross-sectional area occupied by the 
particles of type b

• Interaction Probability = 

nb v 
Rate per particle of type a = 

• Consider volume V,  total reaction rate = 
=

example

• As anticipated: Rate = Flux  x  Number of targets x cross section

Prof. M.A. Thomson Michaelmas 2010 30

Cross Section Calculations
3• Consider scattering process

• Start from Fermi’s Golden Rule: 

where  is the transition matrix for a normalisation of 1/unit volume

1 2

4

• Now

• For 1 target particle per unit volume

the parts are not Lorentz Invariant
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•To obtain a Lorentz Invariant form  use wave-functions normalised to        particles
per unit volume

• Again define L.I. Matrix element

• The integral is now written in a Lorentz invariant form
• The quantity  can be written in terms of a four-vector     

scalar product and is therefore also Lorentz Invariant  (the Lorentz Inv. Flux)
(see appendix I)

• Consequently cross section is a Lorentz Invariant  quantity
Two special cases of Lorentz Invariant Flux:
• Centre-of-Mass Frame • Target (particle 2) at rest

2�2 Body Scattering in C.o.M. Frame
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1 2

4

3• We will now apply above Lorentz Invariant formula for the
interaction cross section to the most common cases used 
in the course. First consider  2�2 scattering in C.o.M. frame

• Start from

• Here

�The integral is exactly the same integral that appeared in the particle decay 
calculation but with         replaced by
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• In the case of elastic scattering   

• For calculating the total cross-section (which is Lorentz Invariant) the result on 
the previous page (eq. (4)) is sufficient. However, it is not so useful for calculating 
the differential cross section in a rest frame other than the C.o.M:

e– e–

�+ �+

1

2

3

4

e– e–

� Start by expressing            in terms of Mandelstam t
i.e. the square of the four-momentum transfer

because the angles in  refer to the C.o.M frame  
• For the last calculation in this section, we need to find a L.I. expression for    

Product of 
four-vectors
therefore L.I.
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• Want to express            in terms of Lorentz Invariant  
where

1
2

4

3

z

x� In C.o.M. frame: 

giving

• Finally, integrating over           (assuming no       dependence of              ) gives:

therefore

hence



Lorentz Invariant differential cross section
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• All quantities in the expression for  are Lorentz Invariant and 
therefore, it applies to any rest frame. It should be noted that 
is a constant, fixed by energy/momentum conservation

• As an example of how to use the invariant expression 
we will consider elastic scattering in the laboratory frame in the limit
where we can neglect the mass of the incoming particle  

E1 m2 e.g. electron or neutrino scattering

In this limit

2�2 Body Scattering in Lab. Frame
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• The other commonly occurring case is scattering from a fixed target in the 
Laboratory Frame (e.g. electron-proton scattering)

e– e–

X X

1 3

2 4

• First take the case of elastic scattering at high energy where the mass
of the incoming particles can be neglected: 

e.g.
1

3
2

4

�

• Wish to express the cross section in terms of scattering angle of the e–

Integrating
overtherefore

• The rest is some rather tedious algebra….  start from four-momenta

so here

But from (E,p) conservation
and, therefore, can also express t in terms of particles 2 and 4
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Note E1 is a constant (the energy of the incoming particle) so

• Equating the two expressions for t gives

so

Particle 1 masslessusing

gives

In limit 
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In this equation, E3 is a function of ��:

giving

�The calculation of the differential cross section for the case where m1 can not be 
neglected is longer and contains no more “physics” (see appendix II). It gives:

Again there is only one independent variable, �,  which can be seen from
conservation of energy

General form for 2�2 Body Scattering in Lab. Frame

i.e. is a function of 
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Summary
� Used a Lorentz invariant formulation of Fermi’s Golden Rule to 

derive decay rates and cross-sections in terms of the Lorentz 
Invariant Matrix Element (wave-functions normalised to 2E/Volume)

Main Results:
�Particle decay:

Where        is a function of particle masses

�Scattering cross section in C.o.M. frame:

�Invariant differential cross section (valid in all frames):

Summary cont.
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�Differential cross section in the lab. frame (m1=0)

�Differential cross section in the lab. frame (m1� 0)

with

Summary of the summary:

�Have now dealt with kinematics of particle decays and cross sections
�The fundamental particle physics is in the matrix element
�The above equations are the basis for all calculations that follow



Appendix I : Lorentz Invariant Flux
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NON-EXAMINABLE

a b�Collinear collision:

To show this is Lorentz invariant, first consider

Giving

Appendix II : general 2�2 Body Scattering in lab frame
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NON-EXAMINABLE

1

3
2

4

�

again

But now the invariant quantity t:
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Which gives

To determine dE3/d(cos�), first differentiate

(AII.1)

Then equate to give 

Differentiate wrt. cos�

Using (1) (AII.2)
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It is easy to show

and using (AII.2) obtain


