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Particle Physics Major Option

EXAMPLES SHEET 1

SPECIAL RELATIVITY

1. a) Draw the two leading-order Feynman diagrams fore+e− → e+e− involving single photon ex-
change, and writeq, the 4-momentum of the exchanged virtual photon, in terms ofthe 4-momenta
of the initial and/or final state particles. By evaluatingq2 in the centre of mass frame, or otherwise,
determine whetherq is timelike(q2 > 0) or spacelike(q2 < 0) in each case.

b) TheMandelstam variabless, t, u in the scattering processa + b → 1 + 2 are defined in terms of
the particle 4-vectors as

s = (pa + pb)
2, t = (pa − p1)

2, u = (pa − p2)
2 .

Show thats+ t+ u = ma
2 +mb

2 +m1
2 +m2

2.

c) Show that
√
s is the total energy of the collision in the centre of mass frame.

d) At the HERA accelerator in Hamburg, 27.5 GeV electrons arebrought into head-on collision with
820 GeV protons. Calculate the centre of mass energy,

√
s, of e−p collisions at HERA, and determine

the beam energy that would be needed to producee−p collisions with this value of
√
s using electrons

incident on a stationary proton target.

e) Show that, in the laboratory frame with particle X at rest,the reactionν + X → ℓ + Y can only
proceed if the incoming neutrino has an energy above a threshold given by

Eν >
(ml +mY )2 −m2

X

2mX

.

2. a) For a particle of four-momentumpµ = (E, px, py, pz), show that the scalar product

p2 = E2 − p2
x − p2

y − p2
z

is Lorentz invariant by explicitly transforming the four components ofpµ.

b) Use the Lorentz transformations to show that the volume elementd3p/E in momentum space is
Lorentz invariant,i.e. that

dpxdpydpz

E
=

dp′xdp
′
ydp

′
z

E ′
.

3. In a 2-body decay,a→ 1 + 2, show that the three-momentum of the final state particles inthe centre
of mass frame has magnitude

p∗ =
1

2ma

√

[m2
a − (m1 +m2)2] [m2

a − (m1 −m2)2] .
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TWO BODY DECAY

4. According to the hypothesis of SU(3) symmetry (i.e. uds flavour independence) of invariant matrix
elements, the two-body decay processesρ→ ππ andK∗ → Kπ have invariant matrix elements of the
form

Mf i = Cpπ

whereCρ/CK∗ = 2/
√

3 andpπ is the final state centre of mass momentum. Show that the predicted
ratio of decay rates agrees with experiment to within about 15%.

[Use the result of Question 3 to obtainpπ. Take theπ, ρ, K andK∗ meson masses to be 139, 770,
494 and 892 MeV respectively. The measured widths areΓ(ρ → ππ) = 153 ± 2 MeV andΓ(K∗ →
Kπ) = 51.3 ± 0.8 MeV.]

5. Theπ+ meson decays almost entirely via the two body decay processπ+ →µ+νµ, with an invariant
matrix element given by

|Mf i|2 = 2G2
Ff

2
πm

2
µ(m2

π −m2
µ)

whereGF = 1.166 × 10−5 GeV−2 is the Fermi constant, andfπ is related to the size of the pion
wavefunction (the pion being a composite object).

a) Obtain a formula for theπ+ → µ+νµ decay rate. Assumingfπ ∼ mπ, calculate the pion lifetime
in natural units and in seconds, and compare to measurement.

[mπ = 139.6 MeV,mµ = 105.7 MeV.]

b) By replacingmµ byme, show that the rate ofπ+ → e+νe decay is1.28×10−4 times smaller than the
corresponding decay rate to muons. Show also that, on the basis of phase space alone (i.e.neglecting
the factor|Mf i|2), the decay rate to electrons would be expected to begreaterthan the rate to muons.
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THE DIRAC EQUATION

6. Write down a simplified form of the Dirac equation for a spinor ψ(t) describing a particle of massm
at rest. For the standard Pauli-Dirac representation of theγ matrices, obtain a differential equation
for each componentψi of the spinorψ, and hence write down a general solution for the evolution of
ψ. Comment on your result and on its relation to the standard plane wave solutions involvingu1(p),
u2(p), v1(p), v2(p).

7. a) For the standard Pauli-Dirac representation of theγ matrices, and for an arbitrary pair of spinorsψ
andφ with componentsψi andφi, show that the currentψγµφ is given by

ψγ0φ = ψ∗
1φ1 + ψ∗

2φ2 + ψ∗
3φ3 + ψ∗

4φ4

ψγ1φ = ψ∗
1φ4 + ψ∗

2φ3 + ψ∗
3φ2 + ψ∗

4φ1

ψγ2φ = −i(ψ∗
1φ4 − ψ∗

2φ3 + ψ∗
3φ2 − ψ∗

4φ1)

ψγ3φ = ψ∗
1φ3 − ψ∗

2φ4 + ψ∗
3φ1 − ψ∗

4φ2

b) For a particle or antiparticle with four-momentumpµ = (E, px, py, pz), show that

u1γ
µu1 = u2γ

µu2 = v1γ
µv1 = v2γ

µv2 = 2pµ

and that
u1γ

µu2 = u2γ
µu1 = v1γ

µv2 = v2γ
µv1 = 0 .

c) Hence show that the currentjµ = ψ(p)γµψ(p) corresponding to a general free particle spinor
ψ(p) = u(p)ei(p.r−Et) or antiparticle spinorψ(p) = v(p)e−i(p.r−Et) is given byjµ = 2pµ. Write
down the particle density and flux represented byjµ, and show that they are consistent.

8. a) For a particle with 4-momentumpµ = (E, p sin θ cosφ, p sin θ sinφ, p cos θ), show that the spinors
(1 + γ5)u1 and(1 + γ5)u2 are not in general proportional tou↑ but become so in the relativistic limit
E ≫ m.

b) Define the termshelicityandchirality, and explain why the above result is to be expected.

c) What would be the equivalent result for the corresponding antiparticle spinors(1 + γ5)v1 and
(1 + γ5)v2 ?

9. a) Without resorting to an explicit representation of theDirac gamma matrices, show that the matrix
γ5 ≡ iγ0γ1γ2γ3 has the following properties:

(γ5)2 = 1, γ5† = γ5, γ5γµ = −γµγ5 .

b) Show that the adjoint spinorsψL andψR corresponding to the left-handed and right-handed com-
ponentsψL ≡ 1

2
(1 − γ5)ψ andψR ≡ 1

2
(1 + γ5)ψ are:

ψL = ψ 1
2
(1 + γ5)

ψR = ψ 1
2
(1 − γ5) .

c) Show thatψLγ
µψR = ψRγ

µψL = 0, and that the currentψγµψ can be decomposed as

ψγµψ = ψLγ
µψL + ψRγ

µψR .
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ELECTRON-MUON ELASTIC SCATTERING

10. a) Show that the matrix element fore−µ− → e−µ− scattering via single photon exchange is

Mf i = − e2

(p1 − p3)2
gµν [u(p3)γ

µu(p1)] [u(p4)γ
νu(p2)]

wherep1 andp3 are the initial and finale− four-momenta andp2 andp4 are the initial and finalµ−

four-momenta.

b) Show that, for scattering in the centre of mass frame with incoming and outgoinge− four-momenta
pµ

1 = (E1, 0, 0, p) and pµ
3 = (E1, p sin θ, 0, p cos θ), the electron current for the various possible

electron spin combinations is

u↓(p3)γ
µu↓(p1) = 2(E1c, ps,−ips, pc)

u↑(p3)γ
µu↓(p1) = 2(ms, 0, 0, 0)

u↑(p3)γ
µu↑(p1) = 2(E1c, ps, ips, pc)

u↓(p3)γ
µu↑(p1) = −2(ms, 0, 0, 0)

wherem is the electron mass ands ≡ sin θ/2, c ≡ cos θ/2.

c) Write down the incoming and outgoing muon 4-momentap2 andp4, and the helicity eigenstate
spinorsu↑(p2), u↓(p2), u↑(p4) andu↓(p4). [Take the muon mass to beM and the muon energy to be
E2 ]. By comparing the forms of the muon and electron spinors, explain how the muon currents

u↓(p4)γ
µu↓(p2) = 2(E2c,−ps,−ips,−pc)

u↑(p4)γ
µu↓(p2) = 2(Ms, 0, 0, 0)

u↑(p4)γ
µu↑(p2) = 2(E2c,−ps, ips,−pc)

u↓(p4)γ
µu↑(p2) = −2(Ms, 0, 0, 0)

can be written down without any further calculation.

d) Explain why some of the above currents vanish in the relativistic limit where the electron mass and
muon mass can be neglected. Sketch the spin configurations which are allowed in this limit.

e) Show that, in the relativistic limit, the matrix element squared|MLL|2 for the case where the in-
cominge− and incomingµ− are both left-handed is given by

|MLL|2 =
4e4s2

(p1 − p3)4

wheres = (p1 + p2)
2. Why is the numerator of|MLL|2 independent ofθ ?

f) Find a similar expression for the matrix element|MRL|2 for a right-handed incominge− and a left-
handed incomingµ−, and explain why|MRL|2 vanishes whenθ = π. Write down the corresponding
results for|MRR|2 and|MLR|2.

g) Show that, in the relativistic limit, the differential cross section for unpolarisede−µ− → e−µ−

scattering in the centre of mass frame is

dσ

dΩ
=

2α2

s
· 1 + 1

4
(1 + cos θ)2

(1 − cos θ)2
.
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h) Show that the spin-averaged matrix element squared can beexpressed in Lorentz-invariant form as

〈

|Mf i|2
〉

=
8e4

(p1 − p3)4
[(p1.p2)(p3.p4) + (p1.p4)(p2.p3)] ,

and that a Lorentz invariant form for the differential crosssection is

dσ

dq2
=

2πα2

q4

[

1 +

(

1 +
q2

s

)2
]

whereq2 = (p1 − p3)
2.

The remainder of this question involves the derivation of a general expression for〈|Mf i|2〉 for the case
of finite electron and muon masses, and isoptional:

i) Show that the spin-averaged matrix element squared for unpolarisede−µ− → e−µ− scattering can
be written in the form

〈

|Mf i|2
〉

=
1

4

∑

spins

|Mf i|2 =
1

4

e4

(p1 − p3)4
LµνWµν

where the electron and muon tensorsLµν andW µν are given by

Lµν ≡
∑

spins

[u(p3)γ
µu(p1)] [u(p3)γ

νu(p1)]
∗

Wµν ≡
∑

spins

[u(p4)γµu(p2)] [u(p4)γνu(p2)]
∗

j) Using the electron currents from part b) above, show that the components of the electron tensorLµν

are








L00 L01 L02 L03

L10 L11 L12 L13

L20 L21 L22 L23

L30 L31 L32 L33









= 8









E2
1c

2 +m2s2 E1psc 0 E1pc
2

E1psc p2s2 0 p2sc
0 0 p2s2 0

E1pc
2 p2sc 0 p2c2









,

and hence verify thatLµν has the Lorentz invariant form

Lµν = 4
[

pµ
1p

ν
3 + pµ

3p
ν
1 + gµν

(

m2 − p1.p3

)]

.

k) Write down the corresponding expression forW µν and hence show that

〈|Mf i|2〉 =
8e4

(p1 − p3)4

[

(p1.p2)(p3.p4) + (p1.p4)(p2.p3) − (p1.p3)M
2 − (p2.p4)m

2 + 2m2M2
]
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NUMERICAL ANSWERS

2. d)
√
s = 300 GeV; E = 48000 GeV

8. Γ(ρ→ ππ)/Γ(K∗ → Kπ) = 3.46; expt= 2.98

9. a)τπ = 3.0 × 1016 GeV−1 = 1.97 × 10−8 s; expt= 2.6 × 10−8 s

b) from phase space alone:Γ(π+ → e+νe)/Γ(π+ → µ+νµ) = 2.34
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