Particle Physics

Part II, Lent Term 2004 HANDOUT II

Quantum Electrodynamics

QUANTUM ELECTRODYNAMICS: is the quantum theory of the electromagnetic interaction.

<u>CLASSICAL PICTURE</u>: Action at a distance : forces arise from \tilde{E} and \tilde{B} fields. Particles act as sources of the fields $\rightarrow V(\tilde{r})$.

Q.E.D. PICTURE: Forces arise from the exchange of virtual field quanta.

Although a complete derivation of the theory of Q.E.D. and Feynman diagrams is beyond the scope of this course, the main features will be derived.

Interaction via Particle Exchange

NON-EXAMINABLE

FERMI'S GOLDEN RULE for Transition rate, Γ_{fi} :

$$\Gamma_{fi} = rac{2\pi}{\hbar} |M_{fi}|^2
ho(E_f)$$

 $ho(E_f)$ = density of final states.

From 1st order perturbation theory, matrix element M_{fi} :

$$\mathrm{M}_{fi}~=~\langle\psi_f|\hat{\mathrm{H}}'|\psi_i
angle$$

where \hat{H}' is the operator corresponding to the perturbation to the Hamiltonian.

This is only the 1^{st} order term in the perturbation expansion. In 2^{nd} order perturbation theory:

$$\mathrm{M}_{fi}
ightarrow \mathrm{M}_{fi} + \sum_{j
eq i} |\mathrm{M}_{fj}| rac{1}{E_i - E_j} |\mathrm{M}_{ji}|$$

where the sum is over all intermediate states j, and E_i and E_j are the energies of the initial and intermediate state For scattering, the 1^{st} and 2^{nd} order terms can be viewed as:

Consider the particle interaction

 $a + b \rightarrow c + d$

which involves the exchange a particle X. This could be the elastic scattering of electrons and protons, e.g. $e^-p
ightarrow e^-p$ where X is an exchanged photon.

 \star One possible space-time picture for this process is

Initial State, *i*: *a*+*b* Final State, f: c+dIntermediate State, *j*: b+c+X

 \star The Time Ordered interaction consists of a
ightarrow c + Xfollowed by b + X
ightarrow d. For example $e_i^- p_i
ightarrow e_f^- p_f$ has the electron emitting a photon $(e_i^-
ightarrow e_f^- \gamma)$ followed by the photon being absorbed by the proton $(p_i \gamma
ightarrow p_f)$.

\star The corresponding term in 2^{nd} order PT:

$$\begin{split} \mathbf{M_{fi}^{ab}} &= \frac{\langle \psi_f | \hat{\mathbf{H}}' | \psi_j \rangle \langle \psi_j | \hat{\mathbf{H}}' | \psi_i \rangle}{E_i - E_j} \\ &= \frac{\langle \psi_d | \hat{\mathbf{H}}' | \psi_X \psi_b \rangle \langle \psi_c \psi_X | \hat{\mathbf{H}}' | \psi_a \rangle}{(E_a + E_b) - (E_c + E_X + E_b)} \\ &= \frac{\langle \psi_d | \hat{\mathbf{H}}' | \psi_X \psi_b \rangle \langle \psi_c \psi_X | \hat{\mathbf{H}}' | \psi_a \rangle}{(E_a - E_c - E_X)} \end{split}$$

Before we go any further some comments:

★ The superscript ab on M_{fi}^{ab} indicates the time ordering where a interacts with X before b

consequently the results are not Lorentz Invariant

i.e. depend on rest frame.

- ★ Momentum is conserved in $a \to c + X$ and $b + X \to d$.
- **★** The exchanged particle X is ON MASS SHELL: $E_X^2 p_X^2 = m_X^2$
- ★ The matrix elements $\langle \psi_d | \hat{\mathbf{H}}' | \psi_X \psi_b \rangle$ and $\langle \psi_c \psi_X | \hat{\mathbf{H}}' | \psi_a \rangle$ depend on the "strength" of the interaction. *e.g.* the strength of the γe^- and γp interaction which determines the probability that an electron(proton) will emit(absorb) a photon.
- ★ For the electromagnetic interaction:

 $\langle \psi_{m k} | \hat{
m H}' | \psi_{m j}
angle = e \epsilon_0 \langle \psi_{m k} | z | \psi_{m j}
angle$

for a photon with polarization in the z-direction. (see Dr Ritchie's QM II lecture 10)

Neglecting spin (*i.e.* for assuming all particles are spin-0 *i.e.* scalars) the ME becomes:

 $\langle \psi_d | \hat{\mathbf{H}}' | \psi_X \psi_b \rangle = e$

★ More generally, $\langle \psi_d | \hat{\mathbf{H}'} | \psi_X \psi_b \rangle = g$, where g is the interaction strength.

Now consider the <u>other</u> time ordering $b \rightarrow d + X$ followed by $a + X \rightarrow b$ $\underbrace{\operatorname{ord}_{(e_i)}^{a} \underbrace{V_{ji}}_{(f_i)} \underbrace{c_{(e_i)}^{v}}_{(f_i)} \underbrace{\operatorname{ord}_{(f_i)}^{v}}_{(f_i)} \underbrace{\operatorname{ord}_{(f_i)$

The corresponding term in 2^{nd} order PT:

$$\begin{split} \mathbf{M}_{fi}^{ba} &= \frac{\langle \psi_{c} | \hat{\mathbf{H}}' | \psi_{X} \psi_{a} \rangle \langle \psi_{d} \psi_{X} | \hat{\mathbf{H}}' | \psi_{b} \rangle}{(E_{a} + E_{b}) - (E_{d} + E_{X} + E_{a})} \\ &= \frac{\langle \psi_{c} | \hat{\mathbf{H}}' | \psi_{X} \psi_{a} \rangle \langle \psi_{d} \psi_{X} | \hat{\mathbf{H}}' | \psi_{b} \rangle}{(E_{b} - E_{d} - E_{X})} \\ &= \frac{\langle \psi_{c} | \hat{\mathbf{H}}' | \psi_{X} \psi_{a} \rangle \langle \psi_{d} \psi_{X} | \hat{\mathbf{H}}' | \psi_{b} \rangle}{(E_{b} - E_{d} - E_{X})} \end{split}$$

Assume a common interaction strength, g, at both vertices,

i.e.
$$\langle \psi_c | \hat{\mathbf{H}}' | \psi_X \psi_a \rangle = \langle \psi_d \psi_X | \hat{\mathbf{H}}' | \psi_b \rangle = g$$

 $\Rightarrow M_{fi}^{ba} = \frac{g^2}{(E_b - E_d - E_X)} \times \frac{1}{2E_X}$

WARNING : I have introduced an (unjustified) factor of $\frac{1}{2E_X}$. This arises from the relativistic normalization of the wave-function for particle X (see appendix). For initial/final state particles the normalisation is cancelled by corresponding terms in the flux/phase-space. For the "intermediate" particle X no such cancelation occurs.

Now sum over two time ordered transition rates

$$\begin{split} \mathbf{M}_{fi} &= \mathbf{M}_{fi}^{ab} + \mathbf{M}_{fi}^{ba} \\ &= g^2 \left(\frac{1}{E_a - E_c - E_X} + \frac{1}{E_b - E_d - E_X} \right) \times \frac{1}{2E_X} \end{split}$$

since
$$E_a + E_b = E_c + E_d$$

 $\Rightarrow E_b - E_d = E_c - E_a$

giving:

$$\begin{split} \mathbf{M}_{fi} &= g^2 \left(\frac{1}{E_a - E_c - E_X} + \frac{1}{E_c - E_a - E_X} \right) \times \frac{1}{2E_X} \\ &= g^2 \left(\frac{1}{E_a - E_c - E_X} - \frac{1}{E_a - E_c + E_X} \right) \times \frac{1}{2E_X} \\ &= g^2 \frac{2E_X}{(E_a - E_c)^2 - E_X^2} \times \frac{1}{2E_X} \end{split}$$

From the first time ordering:

$$E_{\underline{X}}^2 = (\tilde{\mathbf{p}}_{\mathbf{a}} - \tilde{\mathbf{p}}_{\mathbf{c}})^2 + m_{\underline{X}}^2$$

therefore

$$\begin{split} M_{fi} &= \frac{g^2}{(E_a - E_c)^2 - (\tilde{p}_a - \tilde{p}_c)^2 - m_X^2} \\ M_{fi} &= \frac{g^2}{q^2 - m_X^2} \\ \end{split}$$
with $q^2 = q^\mu q_\mu = E^2 - |\tilde{p}|^2$

where
$$(E, |\tilde{\mathbf{p}}|)$$
 are energy/momentum carried by the virtual particle. The SUM of time-ordered processes depends on q^2 and is therefore Lorentz invariant ! The 'invariant mass' of the exchanged particle, X , $m_{inv}^2 = E^2 - |\tilde{\mathbf{p}}|^2$, is NOT the REST MASS, m_X .

Lent 2004

The term

is called the PROPAGATOR

It corresponds to the term in the matrix element arising from the exchange of a massive particle which mediates the force. For massless particles e.g. photons :

NOTE: q^2 is the 4-momentum of the exchanged particle $(q^2 = q^{\mu}q_{\mu} = E^2 - | ilde{\mathrm{p}}|^2)$

Previously (page 35 of HANDOUT 1) we obtained the matrix element for elastic scattering in the YUKAWA potential:

$$M_{fi}^{YUK} = -rac{g^2}{(m^2+|ec{\mathrm{p}}|^2)}$$

For elastic scattering $E_X=0$, and $q^2=-| ilde{\mathrm{p}}|^2$

$$M_{fi}^{YUK}
ightarrow rac{g^2}{q^2-m^2}$$

Which is exactly the expression obtained on the previous page. Hence, elastic scattering via particle exchange in 2nd order P.T. is equivalent to scattering in a Yukawa potential using 1st order P.T.

NEWTON : "...that one body can act upon another at a distance, through a vacuum, without the mediation of anything else,..., is to me a great absurdity"

- ★ In Classical Mechanics and non-relativistic Quantum Mechanics forces arise from potentials $V(\tilde{\mathbf{r}})$ which act instantaneously over all space.
- ★ In Quantum Field theory, forces are mediated by the exchange of virtual field quanta - and there is no mysterious action at a distance.
- ★ Matter and Force described by 'particles'

- ★ The results of calculations based on a single process in Time-Ordered Perturbation Theory (sometimes called old-fashioned, OFPT) depend on the reference frame.
- ★ However, the sum of all time orderings is <u>not frame</u> dependent and provides the basis for our relativistic theory of Quantum Mechanics.
- ★ The sum of time orderings are represented by FEYNMAN DIAGRAMS

- Energy and Momentum are conserved at the interaction vertices
- **★** But the exchanged particle no longer has $m_X^2 = E_X^2 p_X^2$, it is VIRTUAL

Virtual Particles:

- **\star** Forces due to exchanged particle X which is termed VIRTUAL.
- ★ The exchanged particle is off mass-shell, *i.e.* for the unobservable exchanged VIRTUAL particle $E^2 \neq p^2 + m_X^2$.
- ★ i.e. $m^2 = E_X^2 p_X^2$ does not give the physical mass, m_X . The mass of the virtual particle $m^2 = E_X^2 p_X^2$ can be +ve or -ve.

Qualitatively: the propagator is inversely proportional to how far the particle is off-shell. The further off-shell, the smaller the probability of producing such a virtual state.

Understanding Feynman Diagrams

★ Feynman diagrams are the language of modern particle physics. They will be used extensively throughout this course.

The Basic Building Blocks

Note : the positron (e^+) line is drawn as a negative energy electron traveling backwards in time

The e^{\pm} — photon interactions

Note: none of these processes are allowed in isolation : Forbidden by $(E, \tilde{\mathrm{p}})$ conservation.

★ The strength of the interaction between the virtual photon and fermions is called the coupling strength. For the electromagnetic interaction this is proportional to electric charge e.

The Electromagnetic Vertex

★ The electromagnetic interaction is described by the photon propagator and the vertex:

COUPLING strength proportional to the fermion charge.

★ All electromagnetic interactions can be described in terms of the above diagram

Always conserve energy and momentum + (angular momentum, charge)

★ QED Vertex NEVER changes flavour i.e.

 $e^-
ightarrow e^- \gamma$ but not $e^-
ightarrow \mu^- \gamma$

A QED Vertex also conserves PARITY

★ Qualitatively : $Q\sqrt{\alpha}$ can be thought of the probability of a charged particle emitting a photon, the probability is proportional to $1/q^2$ of the photon.

Matrix element M factorises into 3 terms :

$$egin{aligned} -iM &= & \langle \overline{u}_e | ie \gamma^\mu | u_e
angle & ext{Electron Current} \ & imes & rac{-ig^{\mu
u}}{q^2} & ext{Photon Propagator} \ & imes & \langle \overline{u}_p | ie \gamma^
u | u_p
angle & ext{Proton Current} \end{aligned}$$

The factors γ^{μ} and $g^{\mu\nu}$ are 4×4 matrices which account for the spin-structure of the interaction (described in the lecture on the Dirac Equation).

Compton Scattering

Electron-Proton Scattering

$$egin{array}{rcl} M &\sim & e.e \ |M|^2 &\sim & e^4 \ \sigma &\sim & (4\pi)^2 lpha^2 \end{array}$$

 e^+e^- Annihilation

$$egin{array}{rcl} M &\sim & e.Q_ue \ |M|^2 &\sim & Q_u^2e^4 \ \sigma &\sim & (4\pi)^2Q_u^2lpha^2 \end{array}$$

$$J/\psi
ightarrow \mu^+\mu^-$$

Coupling strength determines 'order of magnitude' of matrix element. For particles interacting/decaying via electromagnetic interaction: typical values for cross sections/lifetimes

$$\sigma_{em} \sim 10^{-2} \, {
m mb} \ au_{em} \sim 10^{-20} \, {
m s}$$

EXAMPLE Calculate the "spin-less" cross sections for the two processes:

Scattering in QED

- ★ electron-proton scattering
- ★ electron-positron annihilation

Here we will consider the case where all particles are spin-0, (see lecture on Dirac Equation for complete treatment)

Fermi's Golden rule and Born Approximation:

$$rac{d\sigma}{d\Omega} ~=~ 2\pi |M|^2 d
ho(E_f)/d\Omega$$

For both processes write the SAME matrix element

$$M = \frac{e^2}{q^2} = \frac{4\pi\alpha}{q^2}$$

However, the four-momentum transfer ($q^2 = E^2 - \tilde{q}^2$) is very different (\tilde{q} is the 3-momentum of the virtual photon)

★ Elastic
$$e^-$$
-proton scattering : $q = (0, \tilde{q})$
 $q^2 = -|\tilde{q}|^2$
★ e^+e^- annihilation : $q = (2E, 0)$
 $q^2 = +4E^2$

From Handout 1, pages 31-34:

$$egin{array}{rcl} rac{d\sigma}{d\Omega}&=&2\pi|M|^2rac{E^2}{(2\pi)^3}\ &=&2\pirac{(4\pilpha)^2}{q^4}rac{E^2}{(2\pi)^3}=rac{4lpha^2E^2}{q^4} \end{array}$$

 q^2 is the four-momentum transfer:

$$q^{2} = q^{\mu}q_{\mu} = (E_{f} - E_{i})^{2} - (\tilde{p}_{f} - \tilde{p}_{i})^{2}$$

$$= E_{f}^{2} + E_{i}^{2} - 2E_{f}E_{i} - \tilde{p}_{f}^{2} - \tilde{p}_{i}^{2} + 2.\tilde{p}_{f}.\tilde{p}_{i}$$

$$= 2m_{e}^{2} - 2E_{f}E_{i} + 2|\tilde{p}_{f}||\tilde{p}_{i}|\cos\theta$$

neglecting electron mass: i.e. $\,m_e^2=0$ and $| ilde{
m p}_{f f}|=E_f$

$$egin{array}{rcl} q^2 &=& -2E_iE_f(1-\cos heta) \ q^2 &=& -4E_iE_f\sin^2 heta \ 2 \end{array}$$

Therefore for ELASTIC scattering $E_i = E_f$ $rac{d\sigma}{d\Omega} = rac{lpha^2}{4E^2 {
m sin}^4 rac{ heta}{2}}$

i.e. the Rutherford scattering formula (Handout 1 p.36)

$$rac{d\sigma}{d\Omega} \;\;=\;\; 2\pi rac{(4\pilpha)^{-}}{q^{4}} rac{E^{-}}{(2\pi)^{3}} = rac{4lpha^{-}E^{-}}{q^{4}}$$

same formula, but different four-momentum transfer:

 $q^2 = q^{\mu}q_{\mu} = (E_{e^+} + E_{e^-})^2 - (\tilde{p}_{e^+} + \tilde{p}_{e^-})^2$

Assuming we are in the centre-of-mass system

$$E_{e^+} = E_{e^-} = E$$

$$\tilde{p}_{e^-} = -\tilde{p}_{e^+}$$

$$\rightarrow q^2 = (2E)^2 = s$$

$$\frac{d\sigma}{d\Omega} = \frac{4\alpha^2 E^2}{q^4} = \frac{4\alpha^2 E^2}{16E^4}$$

$$= \frac{\alpha^2}{s}$$

Integrating gives total cross section:

$$\sigma = 4\pi rac{lpha^2}{s}$$

This is not quite correct - because we have neglected spin. The actual cross section (see lecture on Dirac Equation) is

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4s}(1 + \cos^2\theta)$$
$$\sigma(e^+e^- \to \mu^+\mu^-) = \frac{4\pi\alpha^2}{3s}$$

Natural Units Example cross section at $\sqrt{s} = 22 \text{ GeV}$ i.e. 11 GeV electrons colliding with 11 GeV positrons.

$$\sigma_{e^+e^- \to \mu^+\mu^-} = \frac{4\pi\alpha^2}{3s} = \frac{4\pi}{137^2} \frac{1}{3 \times 22^2}$$

= 4.6 × 10⁻⁷ GeV⁻²
= 4.6 × 10⁻⁷ (ħc)²/(1.6 × 10⁻¹⁰)² m²
= 1.8 × 10⁻³⁸ m² = 0.18 nb

The Drell-Yan Process

\star Can also annihilate $q\overline{q}$ as in the Drell-Yan process

e.g. $\pi^- p
ightarrow \mu^+ \mu^- + hadrons$

(see Question 3 on the problem sheet)

Experimental Tests of QED

★ QED is an incredibly successful theory

Example

 \star Magnetic moments of $\mathrm{e}^{\pm},\mu^{\pm}$

$$ilde{\mu} ~=~ g rac{e}{2m} ilde{ ext{s}}$$

★ For a point-like spin 1/2 particle :

However higher order terms induce an anomalous magnetic moment i.e. g not quite 2.

 $\frac{(g_e-2)}{2} = 11596521.869 \pm 0.041 \times 10^{-10} \text{ EXPT}$ $\frac{(g_e-2)}{2} = 11596521.3 \qquad \pm 0.3 \times 10^{-10} \text{ THEORY}$

 \star Agreement at the level of 1 in 10^8

★ Q.E.D. provides a remarkably precise description of the electromagnetic interaction !

So far only considered lowest order term in the perturbation series. Higher order terms also contribute

Second order suppressed by α^2 relative to first order. <u>Provided α is small</u>, *i.e.* perturbation is small, lowest order dominates.

- ★ $\alpha = \frac{e^2}{4\pi}$ specifies the strength of the interaction between an electron and photon.
- **★** BUT α isn't a constant

Consider a free electron: Quantum fluctuations lead to a 'cloud' of virtual electron/positron pairs

this is just one of many (an infinite set) such diagrams.

- **★** The vacuum acts like a dielectric medium
- \star The virtual e^+e^- pairs are polarized
- **★** At large distances the bare electron charge is screened.

Running of lpha

Measure $lpha(q^2)$ from ${
m e^+e^-}
ightarrow \mu^+\mu^-$ etc.

 $\bigstar \alpha$ increases with the increasing q^2 (i.e. closer to the bare charge).

★ At
$$q^2 = 0$$
: $\alpha = 1/137$
★ At $q^2 = (100 \text{ GeV})^2$: $\alpha = 1/128$

NON-EXAMINABLE

★ Previously normalized wave-functions to 1 particle in a box of side L (see Handout 1, pages 33-34).

Rest Frame 1 particle/V

Lab. Frame 1 particle/(V/γ)

★ In relativity, box will be Lorentz Contracted by a factor of

$$\gamma = rac{1}{\sqrt{1-v^2/c^2}} = rac{E}{m}$$

i.e. $V' = V(rac{m}{E})$

i.e. E/m particles per volume $ar{V}$

NEED to adjust normalization volume with energy

Conventional choice:

$$N=rac{1}{\sqrt{2E}}$$

★ In most scattering process the factors of $\sqrt{2E}$ in the wave-function normalization cancel with corresponding factors in the expressions for flux and density of states, just as the factors of L^3 were canceled previously (Handout 1, pages 35)