Particle Physics

Dr M.A. Thomson

Part II, Lent Term 2004 HANDOUT II

Quantum Electrodynamics

QUANTUM ELECTRODYNAMICS: is the quantum theory of the electromagnetic interaction.

CLASSICAL PICTURE: Action at a distance : forces arise from $\tilde{\mathbf{E}}$ and $\tilde{\mathbf{B}}$ fields. Particles act as sources of the fields $\rightarrow V(\tilde{\mathbf{r}})$.
Q.E.D. PICTURE: Forces arise from the exchange of virtual field quanta.

Although a complete derivation of the theory of Q.E.D. and

Feynman diagrams is beyond the scope of this course, the main features will be derived.

Interaction via Particle Exchange

NON-EXAMINABLE

FERMI'S GOLDEN RULE for Transition rate, $\boldsymbol{\Gamma}_{\boldsymbol{f} i}$:

$$
\Gamma_{f i}=\frac{2 \pi}{\hbar}\left|M_{f i}\right|^{2} \rho\left(E_{f}\right)
$$

$\rho\left(\boldsymbol{E}_{f}\right)=$ density of final states.
From $1^{\text {st }}$ order perturbation theory, matrix element $\mathrm{M}_{\boldsymbol{f} \boldsymbol{i}}$:

$$
\mathbf{M}_{f i}=\left\langle\psi_{f}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{i}\right\rangle
$$

where $\hat{\mathbf{H}}^{\prime}$ is the operator corresponding to the perturbation to the Hamiltonian.

This is only the $1^{\text {st }}$ order term in the perturbation expansion. $\ln 2^{\text {nd }}$ order perturbation theory:

$$
\mathrm{M}_{f i} \rightarrow \mathrm{M}_{f i}+\sum_{j \neq i}\left|\mathrm{M}_{f j}\right| \frac{1}{E_{i}-E_{j}}\left|\mathrm{M}_{j i}\right|
$$

where the sum is over all intermediate states j, and $\boldsymbol{E}_{\boldsymbol{i}}$ and $\boldsymbol{E}_{\boldsymbol{j}}$ are the energies of the initial and intermediate state

For scattering, the $1^{s t}$ and $2^{\text {nd }}$ order terms can be viewed as:

Consider the particle interaction

$$
a+b \rightarrow c+d
$$

which involves the exchange a particle X. This could be the elastic scattering of electrons and protons, e.g. $e^{-} p \rightarrow e^{-} p$ where X is an exchanged photon.

One possible space-time picture for this process is

* The Time Ordered interaction consists of $a \rightarrow c+X$ followed by $b+X \rightarrow d$. For example $e_{i}^{-} p_{i} \rightarrow e_{f}^{-} p_{f}$ has the electron emitting a photon $\left(e_{i}^{-} \rightarrow \boldsymbol{e}_{\boldsymbol{f}}^{-} \gamma\right.$) followed by the photon being absorbed by the proton $\left(p_{i} \gamma \rightarrow p_{f}\right)$.

The corresponding term in $2^{n d}$ order PT:

$$
\begin{aligned}
\mathbf{M}_{f i}^{a b} & =\frac{\left\langle\psi_{f}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{j}\right\rangle\left\langle\psi_{j}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{i}\right\rangle}{\boldsymbol{E}_{i}-\boldsymbol{E}_{j}} \\
& =\frac{\left\langle\psi_{d}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{b}\right\rangle\left\langle\psi_{c} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{a}\right\rangle}{\left(\boldsymbol{E}_{a}+\boldsymbol{E}_{b}\right)-\left(\boldsymbol{E}_{c}+\boldsymbol{E}_{X}+\boldsymbol{E}_{b}\right)} \\
& =\frac{\left\langle\psi_{\boldsymbol{a}}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{b}\right\rangle\left\langle\psi_{c} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{a}\right\rangle}{\left(\boldsymbol{E}_{a}-\boldsymbol{E}_{c}-\boldsymbol{E}_{X}\right)}
\end{aligned}
$$

Before we go any further some comments:
\star The superscript $a b$ on $\mathrm{M}_{f i}^{a b}$ indicates the time ordering where a interacts with X before b
consequently the results are not Lorentz Invariant i.e. depend on rest frame.
\star Momentum is conserved in $a \rightarrow c+X$ and $b+X \rightarrow d$.

* The exchanged particle X is ON MASS SHELL:

$$
E_{X}^{2}-p_{X}^{2}=m_{X}^{2}
$$

\star The matrix elements $\left\langle\psi_{d}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{b}\right\rangle$ and $\left\langle\psi_{c} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{a}\right\rangle$ depend on the "strength" of the interaction. e.g. the strength of the γe^{-}and γp interaction which determines the probability that an electron(proton) will emit(absorb) a photon.
\star For the electromagnetic interaction:

$$
\left\langle\psi_{k}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{j}\right\rangle=e \epsilon_{0}\left\langle\psi_{k}\right| z\left|\psi_{j}\right\rangle
$$

for a photon with polarization in the z-direction. (see Dr Ritchie's QM II lecture 10)
\star Neglecting spin (i.e. for assuming all particles are spin-0 i.e. scalars) the ME becomes:

$$
\left\langle\psi_{d}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{b}\right\rangle=e
$$

\star More generally, $\left\langle\psi_{d}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{b}\right\rangle=g$, where g is the interaction strength.

Now consider the other time ordering $b \rightarrow d+X$
followed by $a+X \rightarrow b$

The corresponding term in $2^{n d}$ order PT:

$$
\begin{aligned}
\mathbf{M}_{f i}^{b a} & =\frac{\left\langle\psi_{c}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{a}\right\rangle\left\langle\psi_{\boldsymbol{d}} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{b}\right\rangle}{\left(\boldsymbol{E}_{a}+\boldsymbol{E}_{b}\right)-\left(\boldsymbol{E}_{\boldsymbol{d}}+\boldsymbol{E}_{X}+\boldsymbol{E}_{a}\right)} \\
& =\frac{\left\langle\psi_{c}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{a}\right\rangle\left\langle\psi_{\boldsymbol{d}} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{b}\right\rangle}{\left(\boldsymbol{E}_{b}-\boldsymbol{E}_{\boldsymbol{d}}-\boldsymbol{E}_{X}\right)} \\
& =\frac{\left\langle\psi_{c}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{a}\right\rangle\left\langle\psi_{\boldsymbol{d}} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{b}\right\rangle}{\left(\boldsymbol{E}_{b}-\boldsymbol{E}_{\boldsymbol{d}}-\boldsymbol{E}_{X}\right)}
\end{aligned}
$$

Assume a common interaction strength, g, at both vertices,
i.e. $\left\langle\psi_{c}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{X} \psi_{a}\right\rangle=\left\langle\psi_{\boldsymbol{d}} \psi_{X}\right| \hat{\mathbf{H}}^{\prime}\left|\psi_{b}\right\rangle=g$

$$
\Rightarrow \quad \mathrm{M}_{f i}^{b a}=\frac{g^{2}}{\left(\boldsymbol{E}_{b}-\boldsymbol{E}_{d}-\boldsymbol{E}_{X}\right)} \times \frac{1}{2 \boldsymbol{E}_{X}}
$$

WARNING : I have introduced an (unjustified) factor of $\frac{1}{2 E_{X}}$. This arises from the relativistic normalization of the wave-function for particle X (see appendix). For initial/final state particles the normalisation is cancelled by corresponding terms in the flux/phase-space. For the "intermediate" particle X no such cancelation occurs.

Now sum over two time ordered transition rates

$$
\begin{aligned}
\mathbf{M}_{f i} & =\mathbf{M}_{f i}^{a b}+\mathbf{M}_{f i}^{b a} \\
& =g^{2}\left(\frac{1}{\boldsymbol{E}_{a}-\boldsymbol{E}_{c}-\boldsymbol{E}_{X}}+\frac{1}{\boldsymbol{E}_{b}-\boldsymbol{E}_{\boldsymbol{d}}-\boldsymbol{E}_{X}}\right) \times \frac{1}{2 \boldsymbol{E}_{X}}
\end{aligned}
$$

$$
\text { since } \boldsymbol{E}_{a}+\boldsymbol{E}_{b}=\boldsymbol{E}_{c}+\boldsymbol{E}_{\boldsymbol{d}}
$$

$$
\Rightarrow \boldsymbol{E}_{b}-\boldsymbol{E}_{d}=\boldsymbol{E}_{c}-\boldsymbol{E}_{a}
$$

$$
\begin{aligned}
& \text { giving: } \begin{aligned}
\mathrm{M}_{f i} & =g^{2}\left(\frac{1}{\boldsymbol{E}_{a}-\boldsymbol{E}_{c}-\boldsymbol{E}_{X}}+\frac{1}{\boldsymbol{E}_{c}-\boldsymbol{E}_{a}-\boldsymbol{E}_{X}}\right) \times \frac{1}{2 \boldsymbol{E}_{X}} \\
& =g^{2}\left(\frac{1}{\boldsymbol{E}_{a}-\boldsymbol{E}_{c}-\boldsymbol{E}_{X}}-\frac{1}{\boldsymbol{E}_{a}-\boldsymbol{E}_{c}+\boldsymbol{E}_{X}}\right) \times \frac{1}{2 \boldsymbol{E}_{X}} \\
& =g^{2} \frac{2 \boldsymbol{E}_{X}}{\left(\boldsymbol{E}_{a}-\boldsymbol{E}_{c}\right)^{2}-\boldsymbol{E}_{X}^{2}} \times \frac{1}{2 \boldsymbol{E}_{X}}
\end{aligned}
\end{aligned}
$$

From the first time ordering:

$$
E_{X}^{2}=\left(\tilde{\mathbf{p}}_{\mathrm{a}}-\tilde{\mathbf{p}}_{\mathrm{c}}\right)^{2}+m_{X}^{2}
$$

therefore

$$
\begin{aligned}
& \mathrm{M}_{f i}=\frac{g^{2}}{\left(\boldsymbol{E}_{a}-\boldsymbol{E}_{c}\right)^{2}-\left(\tilde{\mathrm{p}}_{\mathrm{a}}-\tilde{\mathrm{p}}_{\mathrm{c}}\right)^{2}-\boldsymbol{m}_{X}^{2}} \\
& \mathrm{M}_{f i}=\frac{g^{2}}{\boldsymbol{q}^{2}-\boldsymbol{m}_{X}^{2}} \\
& \quad \text { with } q^{2}=q^{\mu} q_{\mu}=E^{2}-|\tilde{\mathbf{p}}|^{2}
\end{aligned}
$$

where $(E,|\tilde{p}|)$ are energy/momentum carried by the virtual particle. The SUM of time-ordered processes depends on q^{2} and is therefore Lorentz invariant! The 'invariant mass' of the exchanged particle, X, $m_{i n v}^{2}=E^{2}-|\tilde{p}|^{2}$, is NOT the REST MASS, m_{X}.

The term

is called the PROPAGATOR

It corresponds to the term in the matrix element arising from the exchange of a massive particle which mediates the force. For massless particles e.g. photons :

NOTE: q^{2} is the 4-momentum of the exchanged particle $\left(q^{2}=q^{\mu} q_{\mu}=E^{2}-|\tilde{\mathbf{p}}|^{2}\right)$

Previously (page 35 of HANDOUT 1) we obtained the matrix element for elastic scattering in the YUKAWA potential:

$$
M_{f i}^{Y U K}=-\frac{g^{2}}{\left(m^{2}+|\overrightarrow{\mathbf{p}}|^{2}\right)}
$$

For elastic scattering $E_{X}=0$, and $q^{2}=-|\tilde{\mathrm{p}}|^{2}$

$$
M_{f i}^{Y U K} \rightarrow \frac{g^{2}}{q^{2}-m^{2}}
$$

Which is exactly the expression obtained on the previous page. Hence, elastic scattering via particle exchange in 2nd order P.T. is equivalent to scattering in a Yukawa potential using 1st order P.T.

Action at a Distance

NEWTON : "...that one body can act upon
another at a distance, through a vacuum, without the mediation of anything else,..., is to me a great absurdity"

* In Classical Mechanics and non-relativistic Quantum Mechanics forces arise from potentials $\boldsymbol{V}(\tilde{\mathbf{r}})$ which act instantaneously over all space.

In Quantum Field theory, forces are mediated by the exchange of virtual field quanta - and there is no mysterious action at a distance. Matter and Force described by 'particles'

Feynman Diagrams

\star The results of calculations based on a single process in Time-Ordered Perturbation Theory (sometimes called old-fashioned, OFPT) depend on the reference frame.
\star However, the sum of all time orderings is not frame dependent and provides the basis for our relativistic theory of Quantum Mechanics.
\star The sum of time orderings are represented by FEYNMAN DIAGRAMS

\star Energy and Momentum are conserved at the interaction vertices

* But the exchanged particle no longer has $m_{X}^{2}=E_{X}^{2}-p_{X}^{2}$, it is VIRTUAL

Virtual Particles

Virtual Particles:

\star Forces due to exchanged particle X which is termed VIRTUAL.

The exchanged particle is off mass-shell, i.e. for the unobservable exchanged VIRTUAL particle $E^{2} \neq p^{2}+m_{X}^{2}$.
\star i.e. $m^{2}=E_{X}^{2}-p_{X}^{2}$ does not give the physical mass, m_{X}. The mass of the virtual particle $m^{2}=E_{X}^{2}-p_{X}^{2}$ can be + ve or -ve.

Qualitatively: the propagator is inversely proportional to how far the particle is off-shell. The further off-shell, the smaller the probability of producing such a virtual state.

Understanding Feynman Diagrams

\star Feynman diagrams are the language of modern particle physics. They will be used extensively throughout this course.

The Basic Building Blocks

The $e^{ \pm}-$photon interactions

Note: none of these processes are allowed in isolation : Forbidden by $(E, \tilde{\mathbf{p}})$ conservation.
\star The strength of the interaction between the virtual photon and fermions is called the coupling strength. For the electromagnetic interaction this is proportional to electric charge e.

The Electromagnetic Vertex

\star The electromagnetic interaction is described by the photon propagator and the vertex:

* All electromagnetic interactions can be described in terms of the above diagram
太 Always conserve energy and momentum + (angular momentum, charge)
\star QED Vertex NEVER changes flavour i.e.
$e^{-} \rightarrow e^{-} \gamma$ but not $e^{-} \rightarrow \mu^{-} \gamma$
\star QED Vertex also conserves PARITY
\star Qualitatively : $Q \sqrt{\alpha}$ can be thought of the probability of a charged particle emitting a photon, the probability is proportional to $1 / q^{2}$ of the photon.

Physics with Feynman Diagrams

Scattering cross sections calculated from:

\star Fermion wave functions
Vertex Factors : coupling strength
\star Propagator
\star Phase Space

Electron Current

Propagator

Proton Current

Matrix element M factorises into 3 terms:

$$
\begin{array}{rlrl}
-\boldsymbol{i M} & =\left\langle\bar{u}_{e}\right| i e \gamma^{\mu}\left|u_{e}\right\rangle & & \text { Electron Current } \\
& \times \frac{-\boldsymbol{i} \boldsymbol{g}^{\mu \nu}}{\boldsymbol{q}^{2}} & & \text { Photon Propagatc } \\
& \times\left\langle\bar{u}_{p}\right| i e \gamma^{\nu}\left|u_{p}\right\rangle & \text { Proton Current }
\end{array}
$$

The factors γ^{μ} and $g^{\mu \nu}$ are 4×4 matrices which account for the spin-structure of the interaction (described in the lecture on the Dirac Equation).

Pure QED Processes

Compton Scattering

Bremsstrahlung

$$
\begin{aligned}
M & \sim \text { Ze.e.e } \\
|M|^{2} & \sim Z^{2} e^{6} \\
\sigma & \sim(4 \pi)^{3} Z^{2} \alpha^{3}
\end{aligned}
$$

nucleus
$\underline{\mathrm{e}^{+} \mathrm{e}^{-} \text {Pair Production }}$

π^{0} Decay

$$
\begin{aligned}
M & \sim Q_{u} e . Q_{u} e \\
|M|^{2} & \sim Q_{u}^{4} e^{4} \\
\sigma & \sim(4 \pi)^{2} Q_{u}^{4} \alpha^{2}
\end{aligned}
$$

Electron-Proton Scattering

$$
\begin{aligned}
M & \sim e . e \\
|M|^{2} & \sim e^{4} \\
\sigma & \sim(4 \pi)^{2} \alpha^{2}
\end{aligned}
$$

$\underline{e^{+}} e^{-}$Annihilation

$$
\begin{aligned}
M & \sim e . Q_{u} e \\
|M|^{2} & \sim Q_{u}^{2} e^{4} \\
\sigma & \sim(4 \pi)^{2} Q_{u}^{2} \alpha^{2}
\end{aligned}
$$

$\boldsymbol{J} / \boldsymbol{\psi} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}$

$Q_{c} e . e$
$|M|^{2} \sim Q_{c}^{2} e^{4}$
$\sigma \sim(4 \pi)^{2} Q_{c}^{2} \alpha^{2}$

Coupling strength determines 'order of magnitude’ of matrix element. For particles interacting/decaying via electromagnetic interaction: typical values for cross sections/lifetimes

$$
\begin{aligned}
\sigma_{e m} & \sim 10^{-2} \mathrm{mb} \\
\tau_{e m} & \sim 10^{-20} \mathrm{~s}
\end{aligned}
$$

Scattering in QED

EXAMPLE Calculate the "spin-less" cross sections for the two processes:

* electron-proton scattering
* electron-positron annihilation

Here we will consider the case where all particles are spin-0, (see lecture on Dirac Equation for complete treatment)

Fermi's Golden rule and Born Approximation:

$$
\frac{d \sigma}{d \Omega}=2 \pi|M|^{2} d \rho\left(E_{f}\right) / d \Omega
$$

For both processes write the SAME matrix element

$$
M=\frac{e^{2}}{q^{2}}=\frac{4 \pi \alpha}{q^{2}}
$$

However, the four-momentum transfer $\left(q^{2}=E^{2}-\tilde{q}^{2}\right)$ is very different ($\tilde{\mathrm{q}}$ is the 3 -momentum of the virtual photon)
\star Elastic e^{-}-proton scattering : $q=(0, \tilde{q})$

$$
q^{2}=-|\tilde{\mathrm{q}}|^{2}
$$

$\star \mathrm{e}^{+} \mathrm{e}^{-}$annihilation : $q=(2 E, 0)$

$$
q^{2}=+4 E^{2}
$$

"Spin-less" e-p Scattering

From Handout 1, pages 31-34:

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =2 \pi|M|^{2} \frac{E^{2}}{(2 \pi)^{3}} \\
& =2 \pi \frac{(4 \pi \alpha)^{2}}{q^{4}} \frac{E^{2}}{(2 \pi)^{3}}=\frac{4 \alpha^{2} E^{2}}{q^{4}}
\end{aligned}
$$

q^{2} is the four-momentum transfer:

$$
\begin{aligned}
q^{2} & =q^{\mu} q_{\mu}=\left(E_{f}-E_{i}\right)^{2}-\left(\tilde{\mathbf{p}}_{\mathrm{f}}-\tilde{\mathbf{p}}_{\mathrm{i}}\right)^{2} \\
& =E_{f}^{2}+E_{i}^{2}-2 E_{f} E_{i}-\tilde{\mathbf{p}}_{\mathrm{f}}^{2}-\tilde{\mathbf{p}}_{\mathrm{i}}^{2}+2 \cdot \tilde{\mathrm{p}}_{\mathrm{f}} \cdot \tilde{\mathrm{p}}_{\mathrm{i}} \\
& =2 m_{e}^{2}-2 E_{f} E_{i}+2\left|\tilde{\mathbf{p}}_{\mathrm{f}} \| \tilde{\mathrm{p}}_{\mathrm{i}}\right| \cos \theta
\end{aligned}
$$

neglecting electron mass: i.e. $m_{e}^{2}=0$ and $\left|\tilde{\mathbf{p}}_{f}\right|=E_{f}$

$$
\begin{aligned}
q^{2} & =-2 E_{i} E_{f}(1-\cos \theta) \\
q^{2} & =-4 E_{i} E_{f} \sin ^{2} \frac{\theta}{2}
\end{aligned}
$$

Therefore for ELASTIC scattering $\boldsymbol{E}_{\boldsymbol{i}}=\boldsymbol{E}_{\boldsymbol{f}}$

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 E^{2} \sin ^{4} \frac{\theta}{2}}
$$

i.e. the Rutherford scattering formula (Handout 1 p.36)

"Spin-less" $\mathrm{e}^{+} \mathrm{e}^{-}$Annihilation

$$
M=\frac{4 \pi \alpha}{q^{2}}
$$

$$
\frac{d \sigma}{d \Omega}=2 \pi \frac{(4 \pi \alpha)^{2}}{q^{4}} \frac{E^{2}}{(2 \pi)^{3}}=\frac{4 \alpha^{2} E^{2}}{q^{4}}
$$

same formula, but different four-momentum transfer:

$$
q^{2}=q^{\mu} q_{\mu}=\left(E_{e^{+}}+E_{e^{-}}\right)^{2}-\left(\tilde{\mathbf{p}}_{e^{+}}+\tilde{\mathbf{p}}_{e^{-}}\right)^{2}
$$

Assuming we are in the centre-of-mass system

$$
\begin{gathered}
E_{e^{+}}=E_{e^{-}}=E \\
\tilde{\mathbf{p}}_{e^{-}}=-\tilde{\mathbf{p}}_{e^{+}} \\
\rightarrow \boldsymbol{q}^{2}=(2 E)^{2}=s \\
\frac{d \sigma}{d \Omega}=\frac{4 \alpha^{2} E^{2}}{q^{4}}=\frac{4 \alpha^{2} E^{2}}{16 E^{4}} \\
=\frac{\alpha^{2}}{s}
\end{gathered}
$$

Integrating gives total cross section:

$$
\sigma=4 \pi \frac{\alpha^{2}}{s}
$$

This is not quite correct - because we have neglected spin. The actual cross section (see lecture on Dirac Equation) is

$$
\begin{aligned}
\frac{d \sigma}{d \Omega} & =\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \\
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}\right) & =\frac{4 \pi \alpha^{2}}{3 s}
\end{aligned}
$$

Natural Units Example cross section at $\sqrt{s}=22 \mathrm{GeV}$ i.e. 11 GeV electrons colliding with 11 GeV positrons.

$$
\begin{aligned}
\sigma_{\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}} & =\frac{4 \pi \alpha^{2}}{3 s}=\frac{4 \pi}{137^{2}} \frac{1}{3 \times 22^{2}} \\
& =4.6 \times 10^{-7} \mathrm{GeV}^{-2} \\
& =4.6 \times 10^{-7}(\hbar c)^{2} /\left(1.6 \times 10^{-10}\right)^{2} \mathrm{~m}^{2} \\
& =1.8 \times 10^{-38} \mathrm{~m}^{2}=0.18 \mathrm{nb}
\end{aligned}
$$

The Drell-Yan Process

\star Can also annihilate $q \bar{q}$ as in the Drell-Yan process

$$
\text { e.g. } \pi^{-} p \rightarrow \mu^{+} \mu^{-}+\text {hadrons }
$$

$\sigma\left(\pi^{-} \boldsymbol{p} \rightarrow \boldsymbol{\mu}^{+} \boldsymbol{\mu}^{-}+\right.$hadrons $) \propto Q_{u}^{2} \alpha^{2}$
(see Question 3 on the problem sheet)

Experimental Tests of QED

\star QED is an incredibly successful theory

Example

\star Magnetic moments of $\mathrm{e}^{ \pm}, \mu^{ \pm}$

$$
\tilde{\mu}=g \frac{e}{2 m} \tilde{\mathbf{s}}
$$

* For a point-like spin $\mathbf{1 / 2}$ particle :

$$
g=2
$$

However higher order terms induce an anomalous magnetic moment i.e. g not quite 2.

$\frac{\left(g_{e}-2\right)}{2}=11596521.869 \pm 0.041 \times 10^{-10}$ EXPT $\frac{\left(g_{e}-2\right)}{2}=11596521.3 \pm 0.3 \times 10^{-10}$ THEORY

* Agreement at the level of 1 in 10^{8}
\star Q.E.D. provides a remarkably precise description of the electromagnetic interaction!

Higher Orders

So far only considered lowest order term in the perturbation series. Higher order terms also contribute

Lowest Order:

Second Order:

$$
|M|^{2} \propto \alpha^{4} \stackrel{1}{\sim} \frac{1}{137^{4}}
$$

Third Order:

Second order suppressed by α^{2} relative to first order. Provided α is small, i.e. perturbation is small, lowest order dominates.

Running of α

$\star \alpha=\frac{e^{2}}{4 \pi}$ specifies the strength of the interaction between an electron and photon.
\star BUT α isn't a constant
Consider a free electron: Quantum fluctuations lead to a 'cloud' of virtual electron/positron pairs

this is just one of many (an infinite set) such diagrams.

* The vacuum acts like a dielectric medium
\star The virtual $\mathrm{e}^{+} \mathrm{e}^{-}$pairs are polarized
* At large distances the bare electron charge is screened.

Running of α

Measure $\alpha\left(q^{2}\right)$ from $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mu^{+} \mu^{-}$etc.

$\star \alpha$ increases with the increasing q^{2} (i.e. closer to the bare charge).
\star At $q^{2}=0: \alpha=1 / 137$
\star At $q^{2}=(100 \mathrm{GeV})^{2}: \alpha=1 / 128$

Appendix: Relativistic Phase Space

NON-EXAMINABLE

\star Previously normalized wave-functions to 1 particle in a box of side L (see Handout 1, pages 33-34).

Rest Frame
1 particle/V

Lab. Frame
1 particle/(V/ γ)

太 In relativity, box will be Lorentz Contracted by a factor of

$$
\begin{aligned}
\gamma & =\frac{1}{\sqrt{1-v^{2} / c^{2}}}=\frac{E}{m} \\
i . e . \quad V^{\prime} & =V\left(\frac{m}{E}\right)
\end{aligned}
$$

i.e. E / m particles per volume V

NEED to adjust normalization volume with energy

Conventional choice:

$$
N=\frac{1}{\sqrt{2 E}}
$$

\star In most scattering process the factors of $\sqrt{2 E}$ in the wave-function normalization cancel with corresponding factors in the expressions for flux and density of states, just as the factors of L^{3} were canceled previously (Handout 1, pages 35)

