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Handout 2 : The Dirac Equation
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Non-Relativistic QM (Revision)

• Take as the starting point non-relativistic energy:

• In QM we identify the energy and momentum operators:

which gives the time dependent Schrödinger equation (take V=0 for simplicity)

•The SE is first order in the time derivatives and second order in spatial
derivatives – and is manifestly not Lorentz invariant. 

•In what follows we will use probability density/current extensively. For
the non-relativistic case these are derived as follows

(S1)

(S1)*

with plane wave solutions: where

• For particle physics need a relativistic formulation of quantum mechanics. But 
first take a few moments to review the non-relativistic formulation QM

(S2)
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•Which by comparison with the continuity equation

leads to the following expressions for probability density and current:

•For a plane wave 

and

�The number of particles per unit volume is

� For particles per unit volume moving at velocity    , have passing
through a unit area per unit time (particle flux). Therefore is a vector in the 
particle’s direction with magnitude equal to the flux.
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The Klein-Gordon Equation
•Applying to the relativistic equation for energy: 

(KG1)
gives the Klein-Gordon equation:

(KG2)

KG can be expressed compactly as (KG3)

•Using

•For plane wave solutions,                , the KG equation gives:

� Not surprisingly, the KG equation has negative energy solutions – this is
just what we started with in eq. KG1

� Historically the –ve energy solutions were viewed as problematic. But for the KG 
there is also a problem with the probability density…
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•Proceeding as before to calculate the probability and current densities:

(KG2)* (KG4)

•Which, again, by comparison with the continuity equation allows us to identify

•For a plane wave 

and
�Particle densities are proportional to E. We might have anticipated this from the 

previous discussion of Lorentz invariant phase space (i.e. density of 1/V in the 
particles rest frame will appear as E/V in a frame where the particle has energy E
due to length contraction).
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The Dirac Equation
�Historically, it was thought that there were two main problems with the 

Klein-Gordon equation:
� Negative energy solutions
� The negative particle densities associated with these solutions

�We now know that in Quantum Field Theory these problems are
overcome and the KG equation is used to describe spin-0 particles.
Nevertheless:

�These problems motivated Dirac (1928) to search for a 
different formulation of  relativistic quantum mechanics 
in which all particle densities are positive.

�The resulting wave equation had solutions which not only
solved this problem but also fully describe the 
intrinsic spin and magnetic moment of the electron!
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The Dirac Equation : 
•Schrödinger eqn: 1st order in 

2nd order in

• Klein-Gordon eqn: 2nd order throughout

• Dirac looked for an alternative which was 1st order throughout:

where

(D1)

is the Hamiltonian operator and, as usual, 

•Writing (D1) in full:

“squaring” this equation gives

• Which can be expanded in gory details as…
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• For this to be a reasonable formulation of relativistic QM, a free particle 
must also obey          , i.e. it must satisfy the Klein-Gordon equation:

• Hence for the Dirac Equation to be consistent with the KG equation require:
(D2)
(D3)
(D4)

�Immediately we see that the        and       cannot be numbers. Require 4 
mutually anti-commuting matrices

�Must be (at least) 4x4 matrices (see Appendix I) 
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•Consequently the wave-function must be a four-component Dirac Spinor

A consequence of introducing an equation
that is 1st order in time/space derivatives is that
the wave-function has new degrees of freedom !

• For the Hamiltonian to be Hermitian
requires

(D5)
i.e. the require four anti-commuting Hermitian 4x4 matrices.

• At this point it is convenient to introduce an explicit representation for         . 
It should be noted that physical results do not depend on the particular
representation – everything is in the commutation relations.

• A convenient choice is based on the Pauli spin matrices:

with

• The matrices are Hermitian and anti-commute with each other

Dirac Equation: Probability Density and Current
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•Now consider probability density/current – this is where the perceived 
problems with the Klein-Gordon equation arose.
•Start with the Dirac equation

(D6)

and its Hermitian conjugate

(D7)

•Consider remembering           are Hermitian

•Now using the identity:
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(D8)gives the continuity equation 

where

•The probability density and current can be identified as:

and

where

•Unlike the KG equation, the Dirac equation has probability densities which 
are always positive.

• In addition, the solutions to the Dirac equation are the four component 
Dirac Spinors. A great success of the Dirac equation is that these 
components naturally give rise to the property of intrinsic spin.

• It can be shown that Dirac spinors represent spin-half particles (appendix II)
with an intrinsic magnetic moment of

(appendix III)
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Covariant Notation: the Dirac � Matrices
•The Dirac equation can be written more elegantly by introducing the

four Dirac gamma matrices:

Premultiply the Dirac equation (D6) by

using this can be written compactly as:

(D9)

� NOTE: it is important to realise that the Dirac gamma matrices are not
four-vectors - they are constant matrices which remain invariant under a 
Lorentz transformation. However it can be shown that the Dirac equation
is itself Lorentz covariant (see Appendix IV)
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Properties of the � matrices
•From the properties of the and matrices (D2)-(D4) immediately obtain:

and

•The full set of relations is

which can be expressed as:

• Are the gamma matrices Hermitian?

are anti-Hermitian

� is Hermitian so is Hermitian.
� The matrices are also Hermitian, giving

� Hence
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Pauli-Dirac Representation
•From now on we will use the Pauli-Dirac representation of the gamma matrices:

which when written in full are

•Using the gamma matrices and can be written as:

where       is the four-vector current.
(The proof that        is indeed a four vector is given in Appendix V.)

•In terms of the four-vector current the continuity equation becomes 

•Finally the expression for the four-vector current 

can be simplified by introducing the adjoint spinor
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The Adjoint Spinor
• The adjoint spinor is defined as 

i.e.

•In terms the adjoint spinor the four vector current can be written:

�We will use this expression in deriving the Feynman rules for the 
Lorentz invariant matrix element for the fundamental interactions.

�That’s enough notation, start to investigate the free particle solutions
of the Dirac equation...
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Dirac Equation: Free Particle at Rest
•Look for free particle solutions to the Dirac equation of form:

where               , which is a constant four-component spinor which must satisfy
the Dirac equation

•Consider the derivatives of the free particle solution

substituting these into the Dirac equation gives:

which can be written: (D10)

•This is the Dirac equation in “momentum” – note it contains no derivatives.
•For a particle at rest

and
eq. (D10)
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•This equation has four orthogonal solutions:

E = m E = -m

(D11)

(D11) (D11)

• Including the time dependence from gives
still have NEGATIVE ENERGY SOLUTIONS (Question 6)

Two spin states with E>0 Two spin states with E<0

�In QM mechanics can’t just discard the E<0 solutions as unphysical 
as we require a complete set of states  - i.e. 4 SOLUTIONS

Prof. M.A. Thomson Michaelmas 2009 61

Dirac Equation: Plane Wave Solutions
•Now aim to find general plane wave solutions: 
•Start from Dirac equation (D10):

and use

Note in the above equation the 4x4 matrix is
written in terms of four 2x2 sub-matrices

•Writing the four component
spinor as

Giving two coupled 
simultaneous equations
for

Note

(D12)
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Expanding

•Therefore (D12)

gives

•Solutions can be obtained by making the arbitrary (but simplest) choices for
i.e. or

and

NOTE: For             these correspond to the E>0 particle at rest solutions 

where N is the 
wave-function
normalisation

giving

�The choice of         is arbitrary,  but this isn’t an issue since we can express any 
other choice as a linear combination. It is analogous to choosing a basis for 
spin which could be eigenfunctions of Sx, Sy or Sz
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Repeating for and gives the solutions and

� The four solutions are:

•If any of these solutions is put back into the Dirac equation, as expected, we obtain

which doesn’t  in itself identify the negative energy solutions.

•One rather subtle point: One could ask the question whether we can interpret 
all four solutions as positive energy solutions. The answer is no. If we take
all solutions to have the same value of  E, i.e. E = +|E|, only two of the solutions 
are found to be independent.
•There are only four independent  solutions when the two are taken to have E<0.

�To identify which solutions have E<0 energy refer back to particle at rest (eq. D11 ).
• For            :           correspond to the E>0 particle at rest solutions

correspond to the E<0 particle at rest solutions 

� So are the +ve energy solutions and        are the -ve energy solutions
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Interpretation of –ve Energy Solutions
�The Dirac equation has negative energy solutions. Unlike the KG equation

these have positive probability densities. But how should –ve energy
solutions be interpreted?  Why don’t all +ve energy electrons fall into 
to the lower energy –ve energy states? 

Dirac Interpretation: the vacuum corresponds to all –ve energy states 
being full with the Pauli exclusion principle preventing electrons falling into
-ve energy states. Holes in the –ve energy states correspond to +ve energy
anti-particles with opposite charge. Provides a picture for pair-production
and annihilation.
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Discovery of the Positron
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C.D.Anderson, Phys Rev 43 (1933) 491�Cosmic ray track in cloud chamber:

23 MeV

63 MeV

6 mm 
Lead
Plate

e�

e�

• e+ enters at bottom, slows down in the
lead plate – know direction

• Curvature in B-field shows that it is a 
positive particle

• Can’t be a proton as would have stopped in the lead

Provided Verification of Predictions of Dirac Equation

B

�Anti-particle solutions exist ! But the picture of the vacuum corresponding to 
the state where all –ve energy states are occupied is rather unsatisfactory, what
about bosons (no exclusion principle),….



Feynman-Stückelberg Interpretation
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�There are many problems with the Dirac interpretation of anti-particles
and it is best viewed as of historical interest – don’t take it too seriously.

�Interpret a negative energy solution as a negative energy particle which
propagates backwards in time or equivalently a positive energy anti-particle
which propagates forwards in time

Feynman-Stückelberg Interpretation:

� �
e– (E<0)

e– (E>0)

e+ (E>0)

e– (E>0)

tim
e

e+ e-

E>0 E<0

NOTE: in the Feynman diagram the arrow on the 
anti-particle remains in the backwards in time 
direction to label it an anti-particle solution.

�At this point it become more convenient to work with anti-particle
wave-functions with    motivated by this interpretation

Anti-Particle Spinors
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•Want to redefine our –ve energy solutions such that:
i.e. the energy of the physical anti-particle.

We can look at this in two ways:

� Start from the negative energy solutions 

Where E is understood to
be negative

•Can simply “define” anti-particle wave-function by flipping the sign 
of      and       following the Feynman-Stückelburg interpretation:

where E is now understood to be positive,
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Find negative energy plane wave solutions to the Dirac equation of 
the form: where

•Note that although these are still negative energy solutions 

�

in the sense that

Anti-Particle Spinors

•Solving the  Dirac equation

(D13)
� The Dirac equation in terms of momentum for ANTI-PARTICLES (c.f. D10)

•Proceeding as before: etc., …

•The same wave-functions that were written down on the previous page.
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Particle and anti-particle Spinors
� Four solutions of form:

� Four solutions of form

� Since we have a four component spinor, only four are linearly independent
� Could choose to work with                  or or …
� Natural to use choose +ve energy solutions 
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Wave-Function Normalisation

•Consider

Probability density

•From handout 1 want to normalise wave-functions 
to particles per unit volume

which for the desired 2E particles per unit volume, requires that

•Obtain same value of N for

Charge Conjugation
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• In the part II Relativity and Electrodynamics course it was shown that
the motion of a charged particle in an electromagnetic field
can be obtained by making the minimal substitution

with

this can be written

and the Dirac equation becomes:

•Taking the complex conjugate and pre-multiplying by 

•Define the charge conjugation operator:

But and

(D14)



Prof. M.A. Thomson Michaelmas 2009 72

•Comparing to the original equation

we see that the spinor        describes a particle of the same mass but with
opposite charge,  i.e. an anti-particle !

D14 becomes:

particle spinor � anti-particle spinor

•Now consider the action of       on the free particle wave-function:

hence

similarly

�Under the charge conjugation operator the particle spinors and
transform to the anti-particle spinors and
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Using the anti-particle solutions
•There is a subtle but important point about the anti-particle solutions written as

Conservation of total angular momentum 

Applying normal QM operators for momentum and energy 

�Hence the quantum mechanical operators giving the physical energy and
momenta of the anti-particle solutions are: 

:•Under the transformation

�But have defined solutions to have E>0

and

�The physical spin of the anti-particle solutions is given by

gives and

.

-mc2

0
A spin-up hole leaves the
negative energy sea in a spin 
down state

In the hole picture:



Summary of Solutions To Dirac Equation
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•The normalised free PARTICLE solutions to the Dirac equation:

with

satisfy

•The ANTI-PARTICLE solutions in terms of the physical energy and momentum:

satisfy

•For both particle and anti-particle solutions:

with

For these states the spin is given by

(Now try question 7 – mainly about 4 vector current )
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Spin States
•In general the spinors are not Eigenstates of

•However particles/anti-particles travelling in the z-direction:

(Appendix II)

are Eigenstates of 

Note the change of sign 
of     when dealing with
antiparticle spinors

z z
� Spinors    are only eigenstates of for



Pause for Breath…
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•Have found solutions to the Dirac equation which are also eigenstates        but 
only for particles travelling along the z axis.

•Not a particularly useful basis 

•More generally, want to label our states in terms of “good quantum numbers”,
i.e. a set of  commuting observables.

(Appendix II)•Can’t use z component of spin:

•Introduce a new concept “HELICITY”

Helicity plays an important role in much that follows
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Helicity
� The component of a particles spin along its direction of flight is a good quantum 

number:

� Define the component of a particles spin along its direction of flight as HELICITY:

•If we make a measurement of the component of spin of a spin-half particle
along any axis it can take two values       , consequently the eigenvalues
of the helicity operator for a spin-half particle are:

“right-handed” “left-handed”Often termed:

� NOTE: these are “RIGHT-HANDED” and LEFT-HANDED HELICITY eigenstates
� In handout 4 we will discuss RH and LH CHIRAL eigenstates. Only in the limit

are the HELICITY eigenstates the same as the CHIRAL eigenstates
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Helicity Eigenstates
�Wish to find solutions of Dirac equation which are also eigenstates of Helicity:

where       and        are right and left handed helicity states and here       is
the unit vector in the direction of the particle.

•The eigenvalue equation:

gives the coupled equations:
(D15)

•Consider a particle propagating in           direction
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•Writing either or then (D15) gives the relation

(For helicity       ) 

So for the components of BOTH and

•For the right-handed helicity state, i.e. helicity +1:

•Putting in the constants of proportionality gives:
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•From the Dirac Equation (D12) we also have

Helicity

(D16)

�(D15) determines the relative normalisation of and , i.e. here

•The negative helicity particle state is obtained in the same way.
•The anti-particle states can also be obtained in the same manner although 

it must be remembered that

i.e.
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� The particle and anti-particle helicity eigenstates states are:

� For all four states, normalising to 2E particles/Volume again gives

particles anti-particles

The helicity eigenstates will be used extensively in the calculations that follow.
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Intrinsic Parity of Dirac Particles

� The parity operation is defined as spatial inversion through the origin:

•Consider a Dirac spinor,         , which satisfies the Dirac equation

•Under the parity transformation:
Try

� Before leaving the Dirac equation, consider parity non-examinable

(D17)

•Expressing derivatives in terms of the primed system:

so

(D17)

Since        anti-commutes with                   :
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Pre-multiplying by 

•Which is the Dirac equation in the new coordinates.
�There for under parity transformations the form of the Dirac equation is 

unchanged provided Dirac spinors transform as

(note the above algebra doesn’t depend  on the choice of                   )
•For a particle/anti-particle at rest the solutions to the Dirac Equation are: 

with

etc.

�Hence an anti-particle at rest has opposite intrinsic parity to a particle at rest. 
�Convention: particles are chosen to have +ve parity; corresponds to choosing 
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Summary
�The formulation of relativistic quantum mechanics starting from the 

linear Dirac equation

New degrees of freedom : found to describe Spin ½ particles

� In terms of 4x4 gamma matrices the Dirac Equation can be written:

� Introduces the 4-vector current and adjoint spinor:

�With the Dirac equation: forced to have two positive energy and two
negative energy solutions

�Feynman-Stückelberg interpretation: -ve energy particle solutions 
propagating backwards in time correspond to physical +ve energy
anti-particles propagating forwards in time 
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� Most useful basis: particle and anti-particle helicity eigenstates

� In terms of 4-component spinors, the charge conjugation and parity
operations are: 

� Now have all we need to know about a relativistic description of
particles… next discuss particle interactions and QED.



Appendix I : Dimensions of the Dirac Matrices
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non-examinable
Starting from 

For       to be Hermitian for all       requires
To recover the KG equation:

Consider
with

Therefore

(using commutation relation)

similarly
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We can now show that the matrices are of even dimension by considering
the eigenvalue equation, e.g.

Eigenvalues of a Hermitian matrix are real so 
but

Since the             are trace zero Hermitian matrices with eigenvalues of 
they must be of even dimension

For N=2 the 3 Pauli spin matrices satisfy

But we require 4 anti-commuting matrices. Consequently the          of the
Dirac equation must be of dimension 4, 6, 8,….. The simplest choice for
is to assume that the        are of dimension 4.
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Appendix II : Spin
non-examinable

•For a Dirac spinor is orbital angular momentum a good quantum number?
i.e. does     commute with the Hamiltonian?

Consider the x component of L:

The only non-zero contributions come from:

Therefore
�Hence the angular momentum does not commute with the Hamiltonian

and is not a constant of motion

(A.1)
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Introduce a new 4x4 operator:

where       are the Pauli spin matrices: i.e.

Now consider the commutator

here

and hence

Consider the x comp:
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Taking each of the commutators in turn:

Hence
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Therefore:

•Hence the observable corresponding to the operator      is also not
a constant of motion. However, referring back to (A.1)

•Because

the commutation relationships for are the same as for the , e.g.
. Furthermore both S2 and Sz are diagonal

•Consequently and for a particle travelling along
the z direction

�S has all the properties of spin in quantum mechanics and therefore the
Dirac equation provides a natural account of the intrinsic angular 
momentum of fermions



Appendix III : Magnetic Moment
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non-examinable
• In the part II Relativity and Electrodynamics course it was shown that

the motion of a charged particle in an electromagnetic field
can be obtained by making the minimal substitution

• Applying this to equations (D12)

(A.2)

Multiplying (A.2) by

where kinetic energy 
•In the non-relativistic limit (A.3) becomes

(A.3)

(A.4)
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•Now

which leads to 
and
•The operator on the LHS of (A.4):

�Substituting back into (A.4) gives the Schrödinger-Pauli equation for
the motion of a non-relativisitic spin ½ particle in an EM field
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Since the energy of a magnetic moment in a field       is we can
identify the intrinsic magnetic moment of  a spin ½ particle to be: 

In terms of the spin:

Classically, for a charged particle current loop

The intrinsic magnetic moment of a spin half Dirac particle is twice
that expected from classical physics. This is often expressed in terms
of the gyromagnetic ratio is g=2.

Appendix IV : Covariance of Dirac Equation
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non-examinable
•For a Lorentz transformation we wish to demonstrate that the Dirac 
Equation is covariant i.e. 

where

and is the transformed spinor.
•The covariance of the Dirac equation will be established if the 4x4 matrix 

S exists.

transforms to

(A.5)
(A.6)

•Consider a Lorentz transformation with the primed frame moving with
velocity v along the x axis

where
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With this transformation equation (A.6)

which should be compared  to the matrix S multiplying (A.5)

�Therefore the covariance of the Dirac equation will be demonstrated if
we can find a matrix S such that

•Considering each value of 

(A.7)

where
and
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•It is easy (although tedious) to demonstrate that the matrix:

with

satisfies the above simultaneous equations

NOTE: For a transformation along in the –x direction

�To summarise, under a Lorentz transformation a spinor          transforms
to    . This transformation preserves the mathematical
form of the Dirac equation
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Appendix V : Transformation of Dirac Current
non-examinable

�The Dirac current       plays an important rôle in the description
of particle interactions. Here we consider its transformation properties.
•Under a Lorentz transformation we have

and for the adjoint spinor:
•First consider the transformation properties of 

where
giving

hence
�The product          is therefore a Lorentz invariant. More generally, the

product    is Lorentz covariant
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�Now consider

•To evaluate this wish to express          in terms of
(A.7)

where we used 
•Rearranging the labels and reordering gives:

�Hence the Dirac current,      , transforms as a four-vector


