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Prof Mark Thomson

Handout 13 : Electroweak Unification and the 
W and Z Bosons 

Boson Polarization States
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� In this handout we are going to consider the decays of W and Z bosons, for
this we will need to consider the polarization. Here simply quote results although
the justification is given in Appendices A and B

� A real (i.e. not virtual) massless spin-1 boson can exist in two transverse
polarization states, a massive spin-1 boson also can be longitudinally polarized

� Boson wave-functions are written in terms of the polarization four-vector 

� For a spin-1 boson travelling along the z-axis, the polarization four vectors are:

transverse transverselongitudinal

Longitudinal polarization isn’t present for on-shell massless particles, the photon 
can exist in two helicity states                   (LH and RH circularly polarized light)
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W-Boson Decay
�To calculate the W-Boson decay rate first consider 

�Want matrix element for : Incoming W-boson : 
Out-going electron : 
Out-going                :

Vertex factor           :

Note, no
propagator

� This can be written in terms of the four-vector scalar product of the W-boson
polarization     and the weak charged current 

with

W-Decay : The Lepton Current
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� First consider the lepton current
�Work in Centre-of-Mass frame

with

� In the ultra-relativistic limit only LH particles and RH anti-particles participate
in the weak interaction so

Note:

Chiral projection operator, 
e.g. see p.131 or p.294

“Helicity conservation”, e.g.
see p.133 or p.295
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•We have already calculated the current 

when considering 

•From page 128 we have for

•For the charged current weak Interaction we only have to consider this single
combination of helicities 

and the three possible W-Boson polarization states:
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� For a W-boson at rest these become:

� Can now calculate the matrix element for the different polarization states

with

Decay at rest : Ee = E� = mW/2
� giving
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� The angular distributions can be understood in terms of the spin of the particles

-1 +1cos� -1 +1cos�-1 +1cos�

M- M+ML

� The differential decay rate (see page 26) can be found using:

where p* is the C.o.M momentum of the final state particles, here
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� Hence for the three different polarisations we obtain:

� Integrating over all angles using

� Gives

� For a sample of unpolarized W boson each polarization state is equally likely,
for the average matrix element sum over all possible matrix elements and
average over the three initial polarization states

� The total W-decay rate is independent of polarization; this has to be the case
as the decay rate cannot depend on the arbitrary definition of the z-axis

� For a sample of unpolarized W-bosons, the decay is isotropic (as expected) 



Prof. M.A. Thomson Michaelmas 2009 459

�For this isotropic decay

� The calculation for the other decay modes (neglecting final state particle masses) 
is same. For quarks need to account for colour and CKM matrix. No decays to
top – the top mass (175 GeV) is greater than the W-boson mass (80 GeV) 

� Unitarity of CKM matrix gives, e.g.

and thus the total decay rate : 
� Hence

Experiment: 2.14±0.04 GeV
(our calculation neglected a 3% QCD
correction to decays to quarks )
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From W to Z
� The W± bosons carry the EM charge - suggestive Weak are EM forces are related.
�W bosons can be produced in e+e- annihilation

�With just these two diagrams there is a problem:
the cross section increases with C.o.M energy
and at some point violates QM unitarity

UNITARITY VIOLATION: when QM calculation gives larger 
flux of W bosons than incoming flux of electrons/positrons

� Problem can be “fixed” by introducing a new boson, the Z. The new diagram 
interferes negatively with the above two diagrams fixing the unitarity problem

� Only works if Z, �, W couplings are related: need ELECTROWEAK UNIFICATION



The Local Gauge Principle
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(see the Appendices A,C and D for more details)
� All the interactions between fermions and spin-1 bosons in the SM are specified 

by the principle of LOCAL GAUGE INVARIANCE

� To arrive at QED, require physics to be invariant under the local phase
transformation of  particle wave-functions

� Note that the change of phase depends on the space-time coordinate:
•Under this transformation the Dirac Equation transforms as

•To make “physics”, i.e. the Dirac equation, invariant under this local
phase transformation FORCED to introduce a massless gauge boson,        . 

+ The Dirac  equation has to be modified to include this new field:

•The modified Dirac equation is invariant under local phase transformations if:

Gauge Invariance
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� For physics to remain unchanged – must have GAUGE INVARIANCE of the new 
field, i.e. physical predictions unchanged for

�Hence the principle of invariance under local phase transformations completely
specifies the interaction between a fermion and the gauge boson (i.e. photon):

interaction vertex: (see p.111)

QED !

� The local phase transformation of QED is a unitary U(1) transformation
i.e. with

Now extend this idea…



From QED to QCD
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� Suppose there is another fundamental symmetry of the universe, say
“invariance under SU(3) local phase transformations”

• i.e. require invariance under 
are the eight 3x3 Gell-Mann matrices introduced in handout 7

where

are 8 functions taking different values at each point in space-time
8 spin-1 gauge bosons

wave function is now a vector in COLOUR SPACE

QCD !
� QCD is fully specified by require invariance under SU(3) local phase

transformations

Corresponds to rotating states in colour space about an axis 
whose direction is different at every space-time point

interaction vertex:

� Predicts 8 massless gauge bosons – the gluons (one for each        ) 
� Also predicts exact form for interactions between gluons, i.e. the  3 and 4 gluon 

vertices – the details are beyond the level of this course
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SU(2)L : The Weak Interaction
� The Weak Interaction arises from SU(2) local phase transformations

where the          are the generators of the SU(2) symmetry, i.e the three Pauli
spin matrices

� The wave-functions have two components which, in analogy with isospin,
are represented by “weak isospin”

� The fermions are placed in isospin doublets and the local phase transformation
corresponds to

3 Gauge Bosons

�Weak Interaction only couples to LH particles/RH anti-particles, hence only 
place LH particles/RH anti-particles in weak isospin doublets: 
RH particles/LH anti-particles placed in weak isospin singlets: 

Weak Isospin

Note: RH/LH refer to chiral states
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� For simplicity only consider
•The gauge symmetry specifies the form of the interaction: one term for each 

of the 3 generators of SU(2) – [note: here include interaction strength in current]

�The charged current W+/W- interaction enters as a linear combinations of W1, W2

� The W± interaction terms

� Express in terms of the weak isospin ladder operators

Origin of        in Weak CC

which can be understood in terms of the weak isospin doublet

Bars indicates
adjoint spinors

corresponds toW+
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� Similarly

corresponds toW-

�However have an additional interaction due to W3

expanding this:

NEUTRAL CURRENT INTERACTIONS !



Electroweak Unification
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�Tempting to identify the           as the
�However this is not the case, have two physical neutral spin-1 gauge bosons,

and the          is a mixture of the two,
� Equivalently write the photon and in terms of the and a new neutral

spin-1 boson the

is the weak 
mixing angle

�The physical bosons (the        and photon field,     ) are:

�The new boson is associated with a new gauge symmetry similar to that
of electromagnetism : U(1)Y

�The charge of this symmetry is called WEAK HYPERCHARGE
Q is the EM charge of a particle
IW is the third comp. of weak isospin

•By convention the coupling to the B� is

(this identification of hypercharge in terms of Q and I3 makes all of the following work out)

3
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� For this to work the coupling constants of the W3, B, and photon must be related
e.g. consider contributions involving the neutral interactions of electrons:

�
W3

B

� The relation is equivalent to requiring 

•Writing this in full:

which works if: (i.e. equate coefficients of L and R terms)

� Couplings of electromagnetism, the weak interaction and the interaction of the
U(1)Y symmetry are therefore related. 
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The Z Boson
�In this model we can now derive the couplings of the Z Boson 

•Writing this in terms of weak isospin and charge: 

for the electron 

For RH chiral states I3=0

•Gathering up the terms for LH and RH chiral states:

•Using:                  gives

with i.e.
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� Unlike for the Charged Current Weak interaction (W) the Z Boson couples
to both LH and RH chiral components, but not equally…

� Use projection operators to obtain vector and axial vector couplings

B� part of Z couples equally to 
LH and RH components

W� part of Z couples only to 
LH components (like W±)
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�Which in terms of V and A components gives:

with

� Hence the vertex factor for the Z boson is:

� Using the experimentally determined value of the weak mixing angle:

Fermion
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Z Boson Decay : �Z
� In W-boson decay only had to consider one helicity combination of (assuming we

can neglect final state masses: helicity states = chiral states) 

W-boson couples:
to LH particles
and RH anti-particles

� But Z-boson couples to LH and RH particles (with different strengths)
� Need to consider only two helicity (or more correctly chiral) combinations:

This can be seen by considering either of the combinations which give zero 

e.g.
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� In terms of left and right-handed combinations need to calculate:

� For unpolarized Z bosons: (Question 26)

average over polarization

and� Using

Z Branching Ratios (Question 27)
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� (Neglecting fermion masses) obtain the same expression for the other decays

•Using values for cV and cA on page 471 obtain:

•The Z Boson therefore predominantly decays to hadrons
Mainly due to factor 3 from colour

•Also predict total decay rate (total width)

Experiment:



Summary
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� The Standard Model interactions are mediated by spin-1 gauge bosons
� The form of the interactions are completely specified by the assuming an

underlying local phase transformation GAUGE INVARIANCE 

U(1)em QED
SU(2)L Charged Current Weak Interaction + W3

SU(3)col QCD
� In order to “unify” the electromagnetic and weak interactions, introduced a 

new symmetry gauge symmetry : U(1) hypercharge

U(1)Y B�

� The physical Z boson and  the photon are mixtures of  the neutral W boson
and B determined by the Weak Mixing angle

� Have we really unified the EM and Weak interactions ? Well not really…
•Started with two independent theories with coupling constants
•Ended up with coupling constants which are related but at the cost of

introducing a new parameter in the Standard Model
•Interactions not unified from any higher theoretical principle… but it works!

Appendix A1 : Electromagnetism
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(Non-examinable)
� In Heaviside-Lorentz units                       Maxwell’s equations in the

vacuum become

� The electric and magnetic fields can be expressed in terms of scalar and
vector potentials

� In terms of the the 4-vector potential                 and the 4-vector current
Maxwell’s equations can be expressed in the covariant form: 

(A1)

(A2)
where             is the anti-symmetric field strength tensor 

(A3)

•Combining (A2) and (A3)
(A4)



Prof. M.A. Thomson Michaelmas 2009 477

which can be written
where the D’Alembertian operator

(A5)

•Acting on equation (A5) with          gives 

Conservation of Electric Charge

•Conservation laws are associated with symmetries. Here the symmetry 
is the GAUGE INVARIANCE of electro-magnetism

Appendix A2 : Gauge Invariance (Non-examinable)

�The electric and magnetic fields are unchanged for the gauge transformation:

where         is any finite differentiable function of position and time 
� In 4-vector notation the gauge transformation can be expressed as:
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� Using the fact that the physical fields are gauge invariant, choose          to be
a solution of

� In this case we have

� Dropping the prime we have a chosen a gauge in which

The Lorentz Condition (A6)

�With the Lorentz condition, equation (A5) becomes:
(A7)

� Having imposed the Lorentz condition we still have freedom to make
a further gauge transformation, i.e.

where                 is any function that satisfies
(A8)

� Clearly (A7) remains unchanged, in addition the Lorentz condition still holds: 



Appendix B1 : Photon Polarization
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(Non-examinable)
• For a free photon (i.e.                 )  equation (A7) becomes

(B1)

(note have chosen a gauge where the Lorentz condition is satisfied)
� Equation (A8) has solutions (i.e. the wave-function for a free photon)

where          is the four-component polarization vector and        is the photon
four-momentum

� Hence equation (B1) describes a massless particle. 
� But the solution has four components – might ask how it can describe a 

spin-1 particle which has three polarization states?

� But for (A8) to hold we must satisfy the Lorentz condition: 

(B2)Hence the Lorentz condition gives 

i.e. only 3 independent components. 
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� However, in addition to the Lorentz condition still have the addional gauge
freedom of                 with (A8)

•Choosing      which has

� Hence the electromagnetic field is left unchanged by

� Hence the two polarization vectors which differ by a mulitple of the photon
four-momentum describe the same photon. Choose       such that the time-like
component of    is zero, i.e.

�With this choice of gauge, which is known as the COULOMB GAUGE, the 
Lorentz condition (B2) gives

(B3)

i.e. only 2 independent components, both transverse to the photons momentum
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� A massless photon has two transverse polarisation states. For a photon
travelling in the z direction these can be expressed as the transversly
polarized states:

� Alternatively take linear combinations to get the circularly polarized
states

� It can be shown that the  state corresponds the state in which the 
photon spin is directed in the +z direction, i.e. 
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Appendix B2 : Massive Spin-1 particles
•For a massless photon we had (before imposing the Lorentz condition)

we had from equation (A5)

�The Klein-Gordon equation for a spin-0 particle of mass m is

(Non-examinable)

suggestive that the appropriate equations for a massive spin-1 particle can
be obtained by replacing

� This is indeed the case, and from QFT it can be shown that for a massive spin 
1 particle equation (A5) becomes

� Therefore a free particle must satisfy

(B4)
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•Acting on equation (B4) with         gives 

(B5)
� Hence, for a massive spin-1 particle, unavoidably have                      ; note this

is not a relation that reflects to choice of gauge.

•Equation (B4) becomes

(B6)
� For a free spin-1 particle with 4-momentum,        , equation (B6) admits solutions 

� Substituting into equation (B5) gives

�The four degrees of freedom in       are reduced to three, but for a massive particle,
equation (B6) does not allow a choice of gauge and we can not reduce the
number of degrees of freedom any further.
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� Hence we need to find three orthogonal polarisation states satisfying

(B7)

� For a particle travelling in the z direction, can still admit the circularly 
polarized states.

�Writing the third state as 

equation (B7) gives

� This longitudinal polarisation state is only present for massive spin-1 particles, 
i.e. there is no analogous state for a free photon (although off-mass shell 
virtual photons can be longitudinally polarized – a fact that was alluded to 
on page 114).
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Appendix C : Local Gauge Invariance
�The Dirac equation for a charged particle in an electro-magnetic field can be 

obtained from the free particle wave-equation by making the minimal substitution

In QM:      and the Dirac equation becomes

(         charge) (see p.112)

(Non-examinable)

(C1)

� In Appendix A2 : saw that the physical EM fields where invariant under the 
gauge transformation 

� Under this transformation the Dirac equation becomes

which is not the same as the original equation. If we require that the Dirac
equation is invariant under the Gauge transformation then under the gauge
transformation we need to modify the wave-functions 

A Local Phase Transformation
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�To prove this, applying the gauge transformation :

to the original Dirac equation gives

(C2)

� But

� Equation (C2) becomes

which is the original form of the Dirac equation
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Appendix D : Local Gauge Invariance 2
� Reverse the argument of Appendix D. Suppose there is a fundamental 

symmetry of the universe under local phase  transformations

� Note that the local nature of these transformations: the phase transformation
depends on the space-time coordinate 

� Under this transformation the free particle Dirac equation 

(Non-examinable)

becomes

Local phase invariance is not possible for a free theory, i.e. one without interactions

� To restore invariance under local phase transformations have to introduce 
a massless “gauge boson” which transforms as 

and make the substitution


