

Michaelmas Term 2009 Prof Mark Thomson

Handout 10 : Leptonic Weak Interactions and Neutrino Deep Inelastic Scattering

Prof. M.A. Thomson

Michaelmas 2009

305

Aside : Neutrino Flavours

- ★ Recent experiments (see Handout 11) → neutrinos have mass (albeit very small)
- ★ The textbook neutrino states, V_e , V_μ , V_τ , are not the fundamental particles; these are V_1 , V_2 , V_3
- **★** Concepts like "electron number" conservation are now known **not** to hold.
- **★** So what are V_e, V_μ, V_τ ?
- ★ Never directly observe neutrinos can only detect them by their weak interactions. Hence by definition V_e is the neutrino state produced along with an electron. Similarly, charged current weak interactions of the state V_e produce an electron

★ Unless dealing with <u>very large</u> distances: the neutrino produced with a positron will interact to produce an electron. For the discussion of the weak interaction continue to use V_e , V_μ , V_τ as if they were the fundamental particle states.

Muon Decay and Lepton Universality

$$\rightarrow - m_w$$

 au^{-}

 v_{τ}

Consider muon decay:

•It is straight-forward to write down the matrix element

$$M_{fi} = \frac{g_W^{(e)} g_W^{(\mu)}}{8m_W^2} [\overline{u}(p_3) \gamma^{\mu} (1 - \gamma^5) u(p_1)] g_{\mu\nu} [\overline{u}(p_2) \gamma^{\nu} (1 - \gamma^5) v(p_4)]$$

Note: for lepton decay $q^2 \ll m_W^2$ so propagator is a constant $1/m_W^2$ i.e. in limit of Fermi theory

•Its evaluation and subsequent treatment of a three-body decay is rather tricky (and not particularly interesting). Here will simply quote the result

Neutrino Scattering

- •In handout 6 considered electron-proton Deep Inelastic Scattering where a virtual photon is used to probe nucleon structure
- •Can also consider the weak interaction equivalent: Neutrino Deep Inelastic Scattering where a virtual W-boson probes the structure of nucleons
 - additional information about parton structure functions
 - + provides a good example of calculations of weak interaction cross sections.

<mark>★</mark>Neutrino Beams:

- •Focus positive pions/kaons

-Allow them to decay
$$\pi^+ o \mu^+
u_\mu$$
 + $K^+ o \mu^+
u_\mu$ $(BRpprox 64\,\%)$

•Gives a beam of "collimated" V_{μ}

•Focus negative pions/kaons to give beam of $\overline{\nu}_{\mu}$

Neutrino-Quark Scattering

★ For V_μ -proton Deep Inelastic Scattering the underlying process is $\ V_\mu d o \mu^- u$

★In the limit $q^2 \ll m_W^2$ the W-boson propagator is $\approx i g_{\mu\nu}/m_W^2$ •The Feynman rules give:

$$-iM_{fi} = \left[-i\frac{g_W}{\sqrt{2}}\overline{u}(p_3)\gamma^{\mu}\frac{1}{2}(1-\gamma^5)u(p_1)\right]\frac{ig_{\mu\nu}}{m_W^2}\left[-i\frac{g_W}{\sqrt{2}}\overline{u}(p_4)\frac{1}{2}\gamma^{\nu}(1-\gamma^5)u(p_2)\right]$$
$$M_{fi} = \frac{g_W^2}{2m_W^2}g_{\mu\nu}\left[\overline{u}(p_3)\gamma^{\mu}\frac{1}{2}(1-\gamma^5)u(p_1)\right]\left[\overline{u}(p_4)\frac{1}{2}\gamma^{\nu}(1-\gamma^5)u(p_2)\right]$$

•Evaluate the matrix element in the extreme relativistic limit where the muon and quark masses can be neglected

Prof. M.A. Thomson

Michaelmas 2009

311

•In this limit the helicity states are equivalent to the chiral states and

$$\begin{array}{l} \frac{1}{2}(1-\gamma^5)u_{\uparrow}(p_1) = 0 & \frac{1}{2}(1-\gamma^5)u_{\downarrow}(p_1) = u_{\downarrow}(p_1) \\ \implies M_{fi} = 0 \quad \text{for} \quad u_{\uparrow}(p_1) \quad \text{and} \quad u_{\uparrow}(p_2) \end{array}$$

•Since the weak interaction "conserves the helicity", the only helicity combination where the matrix element is non-zero is

$$M_{fi} = \frac{g_W^2}{2m_W^2} g_{\mu\nu} \left[\overline{u}_{\downarrow}(p_3) \gamma^{\mu} u_{\downarrow}(p_1) \right] \left[\overline{u}_{\downarrow}(p_4) \gamma^{\nu} u_{\downarrow}(p_2) \right]$$

NOTE: we could have written this down straight away as in the ultra-relativistic limit only LH helicity particle states participate in the weak interaction.

★Consider the scattering in the C.o.M frame

Evaluation of Neutrino-Quark Scattering ME

•Go through the calculation in gory detail (fortunately only one helicity combination) •In CMS frame, neglecting particle masses:

$$p_{1} = (E, 0, 0, E),$$

$$p_{2} = (E, 0, 0, -E)$$

$$p_{3} = (E, E \sin \theta^{*}, 0, E \cos \theta^{*})$$

$$p_{4} = (E, -E \sin \theta^{*}, 0, -E \cos \theta^{*})$$

•Dealing with LH helicity particle spinors. From handout 3 (p.80), for a massless particle travelling in direction (θ, ϕ) :

$$u_{\downarrow} = \sqrt{E} \begin{pmatrix} -s \\ ce^{i\phi} \\ s \\ -ce^{i\phi} \end{pmatrix} \qquad \qquad c = \cos\frac{\theta}{2}; \quad s = \sin\frac{\theta}{2}$$

•Here $(\theta_1, \phi_1) = (0, 0); \ (\theta_2, \phi_2) = (\pi, 0); \ (\theta_3, \phi_3) = (\theta^*, 0); \ (\theta_4, \phi_4) = (\pi - \theta^*, \pi)$

giving:

$$u_{\downarrow}(p_1) = \sqrt{E} \begin{pmatrix} 0\\1\\0\\-1 \end{pmatrix}; \ u_{\downarrow}(p_2) = \sqrt{E} \begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}; \ u_{\downarrow}(p_3) = \sqrt{E} \begin{pmatrix} -s\\c\\s\\-c \end{pmatrix}; \ u_{\downarrow}(p_4) = \sqrt{E} \begin{pmatrix} -c\\-s\\c\\s \end{pmatrix}$$

Prof. M.A. Thomson

Michaelmas 2009

313

•To calculate

$$M_{fi} = \frac{g_W^2}{2m_W^2} g_{\mu\nu} \left[\overline{u}_{\downarrow}(p_3) \gamma^{\mu} u_{\downarrow}(p_1) \right] \left[\overline{u}_{\downarrow}(p_4) \gamma^{\nu} u_{\downarrow}(p_2) \right]$$

need to evaluate two terms of form

$$\begin{split} \overline{\psi}\gamma^{0}\phi &= \psi^{\dagger}\gamma^{0}\gamma^{0}\phi = \psi_{1}^{*}\phi_{1} + \psi_{2}^{*}\phi_{2} + \psi_{3}^{*}\phi_{3} + \psi_{4}^{*}\phi_{4} \\ \overline{\psi}\gamma^{1}\phi &= \psi^{\dagger}\gamma^{0}\gamma^{1}\phi = \psi_{1}^{*}\phi_{4} + \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} + \psi_{4}^{*}\phi_{1} \\ \overline{\psi}\gamma^{2}\phi &= \psi^{\dagger}\gamma^{0}\gamma^{2}\phi = -i(\psi_{1}^{*}\phi_{4} - \psi_{2}^{*}\phi_{3} + \psi_{3}^{*}\phi_{2} - \psi_{4}^{*}\phi_{1}) \\ \overline{\psi}\gamma^{3}\phi &= \psi^{\dagger}\gamma^{0}\gamma^{3}\phi = \psi_{1}^{*}\phi_{3} - \psi_{2}^{*}\phi_{4} + \psi_{3}^{*}\phi_{1} - \psi_{4}^{*}\phi_{2} \end{split}$$

•Using

$$u_{\downarrow}(p_{1}) = \sqrt{E} \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}; \ u_{\downarrow}(p_{2}) = \sqrt{E} \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}; \ u_{\downarrow}(p_{3}) = \sqrt{E} \begin{pmatrix} -c \\ c \\ s \\ -c \end{pmatrix}; \ u_{\downarrow}(p_{4}) = \sqrt{E} \begin{pmatrix} -c \\ -s \\ c \\ s \end{pmatrix}$$

$$\boxed{u_{\downarrow}(p_{4})} \gamma^{\mu} u_{\downarrow}(p_{1}) = 2E(c, s, -is, c)$$

$$\overline{u_{\downarrow}(p_{4})} \gamma^{\nu} u_{\downarrow}(p_{2}) = 2E(c, -s, -is, -c)$$

$$M_{fi} = \frac{g_{W}^{2}}{2m_{W}^{2}} 4E^{2}(c^{2} + s^{2} + s^{2} + c^{2}) = \frac{g_{W}^{2}\hat{s}}{m_{W}^{2}} \qquad \hat{s} = (2E)^{2}$$

Prof. M.A. Thomson

★ Note the Matrix Element is isotropic

$$M_{fi} = \frac{g_W^2}{m_W^2} \hat{s}$$

we could have anticipated this since the helicity combination (spins anti-parallel) has $S_z = 0 \rightarrow$ no preferred polar angle

★As before need to sum over all possible spin states and average over all possible initial state spin states. Here only one possible spin combination (LL→LL) and only 2 possible initial state combinations (the neutrino is always produced in a LH helicity state)

$$\langle |M_{fi}|^2 \rangle = \frac{1}{2} \cdot \left| \frac{g_W^2}{m_W^2} \hat{s} \right|^2$$

The factor of a half arises because half of the time the quark will be in a RH states and won't participate in the charged current Weak interaction

★ From handout 1, in the extreme relativistic limit, the cross section for any 2→2 body scattering process is

$$rac{\mathrm{d}\sigma}{\mathrm{d}\Omega^*} = rac{1}{64\pi^2\hat{s}}\langle|M_{fi}|^2
angle$$

Prof. M.A. Thomson

 $\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega^*} = \frac{1}{64\pi^2 \hat{s}} \langle |M_{fi}|^2 \rangle = \frac{1}{64\pi \hat{s}} \frac{1}{2} \left(\frac{g_W^2 \hat{s}}{m_W^2}\right)^2 = \left(\frac{g_W^2}{8\sqrt{2}\pi m_W^2}\right)^2 \hat{s}$

Michaelmas 2009

using
$$\frac{G_{\rm F}}{\sqrt{2}} = \frac{g_W^2}{8m_W^2}$$
 \Longrightarrow $\frac{{
m d}\sigma}{{
m d}\Omega^*} = \frac{G_{\rm F}^2}{4\pi^2}\hat{s}$

 \star Integrating this isotropic distribution over $~~\mathrm{d}\Omega^{*}$

$$\bullet \quad \sigma_{vq} = \frac{G_{\rm F}^2 \hat{s}}{\pi} \tag{1}$$

•cross section is a Lorentz invariant quantity so this is valid in any frame

315

Antineutrino-Quark Scattering

(Anti)neutrino-(Anti)quark Scattering

•Non-zero anti-quark component to the nucleon \Rightarrow also consider scattering from \overline{q} •Cross-sections can be obtained immediately by comparing with quark scattering and remembering to only include LH particles and RH anti-particles

Differential Cross Section dσ/dy

★ Derived differential neutrino scattering cross sections in C.o.M frame, can convert to Lorentz invariant form

Prof. M.A. Thomson

Parton Model For Neutrino Deep Inelastic Scattering

Neutrino-proton scattering can occur via scattering from a <u>down-quark</u> or from an <u>anti-up quark</u>

•In the parton model, number of down quarks within the proton in the momentum fraction range $x \to x + dx$ is $d^p(x)dx$. Their contribution to the neutrino scattering cross-section is obtained by multiplying by the $v_{\mu}d \to \mu^- u$ cross-section derived previously

$$\frac{\mathrm{d}\sigma^{\nu p}}{\mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi}\hat{s}d^p(x)\mathrm{d}x$$

where \hat{s} is the centre-of-mass energy of the $V_{\mu}d$

•Similarly for the \overline{u} contribution

$$\frac{\mathrm{d}\sigma^{\nu_P}}{\mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi}\hat{s}(1-y)^2\overline{u}^p(x)\mathrm{d}x$$

★Summing the two contributions and using $\hat{s} = xs$

$$\frac{\mathrm{d}^2 \sigma^{\nu p}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[d^p(x) + (1-y)^2 \overline{u}^p(x) \right]$$

★ The anti-neutrino proton differential cross section can be obtained in the same manner:

$$\frac{\mathrm{d}^2 \sigma^{\overline{v}p}}{\mathrm{d}x\mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[(1-y)^2 u^p(x) + \overline{d}^p(x) \right]$$

★ For (anti)neutrino – neutron scattering:

$$\frac{\mathrm{d}^2 \sigma^{\nu n}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[d^n(x) + (1-y)^2 \overline{u}^n(x) \right]$$
$$\frac{\mathrm{d}^2 \sigma^{\overline{\nu}n}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[(1-y)^2 u^n(x) + \overline{d}^n(x) \right]$$

Prof. M.A. Thomson

Michaelmas 2009

323

•As before, define neutron distributions functions in terms of those of the proton

$$u(x) \equiv u^{p}(x) = d^{n}(x); \qquad d(x) \equiv d^{p}(x) = u^{n}(x)$$

$$\overline{u}(x) \equiv \overline{u}^{p}(x) = \overline{d}^{n}(x); \qquad \overline{d}(x) \equiv \overline{d}^{p}(x) = \overline{u}^{n}(x)$$

$$\frac{d^{2}\sigma^{\nu p}}{dxdy} = \frac{G_{F}^{2}}{\pi}sx\left[d(x) + (1-y)^{2}\overline{u}(x)\right]$$
(2)

$$\frac{\mathrm{d}^2 \sigma^{V p}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[(1-y)^2 u(x) + \overline{d}(x) \right] \tag{3}$$

$$\frac{\mathrm{d}^2 \sigma^{\nu n}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[u(x) + (1-y)^2 \overline{d}(x) \right] \tag{4}$$

$$\frac{\mathrm{d}^2 \sigma^{\nu p}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{\pi} sx \left[(1-y)^2 d(x) + \overline{u}(x) \right] \tag{5}$$

★ Because neutrino cross sections are very small, need massive detectors. These are usually made of Iron, hence, experimentally measure a combination of proton/neutron scattering cross sections **★** For an isoscalar target (i.e. equal numbers of protons and neutrons), the mean cross section per nucleon:

$$\frac{\mathrm{d}^2 \sigma^{\nu N}}{\mathrm{d}x \mathrm{d}y} = \frac{1}{2} \left(\frac{\mathrm{d}^2 \sigma^{\nu p}}{\mathrm{d}x \mathrm{d}y} + \frac{\mathrm{d}^2 \sigma^{\nu n}}{\mathrm{d}x \mathrm{d}y} \right)$$
$$\stackrel{\bullet}{\longrightarrow} \frac{\mathrm{d}^2 \sigma^{\nu N}}{\mathrm{d}x \mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{2\pi} sx \left[u(x) + d(x) + (1-y)^2 (\overline{u}(x) + \overline{d}(x)) \right]$$

Integrate over momentum fraction X

$$\frac{\mathrm{d}\sigma^{\nu N}}{\mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{2\pi} s \left[f_q + (1-y)^2 f_{\overline{q}} \right]$$
(6)

where f_q and $f_{\overline{q}}$ are the total momentum fractions carried by the quarks and by the anti-quarks within a nucleon

$$f_q \equiv f_d + f_u = \int_0^1 x \left[u(x) + d(x) \right] dx; \quad f_{\overline{q}} \equiv f_{\overline{d}} + f_{\overline{u}} = \int_0^1 x \left[\overline{u}(x) + \overline{d}(x) \right] dx$$

milarly

•Si

$$\frac{\mathrm{d}\sigma^{\overline{\nu}N}}{\mathrm{d}y} = \frac{G_{\mathrm{F}}^2}{2\pi} s\left[(1-y)^2 f_q + f_{\overline{q}} \right]$$

Prof. M.A. Thomson

Michaelmas 2009

325

(7)

e.g. CDHS Experiment (CERN 1976-1984)

•1250 tons Magnetized iron modules Separated by drift chambers **Study Neutrino Deep Inelastic Scattering Experimental Signature:** v_{μ} . X $\overline{} W$ v_{μ} μ^{-}

$$E_{\mu} = (1 - y)E_{\nu} \longrightarrow y = \left(1 - \frac{E_{\mu}}{E_{\nu}}\right)$$

Prof. M.A. Thomson

Michaelmas 2009

327

Measured y Distribution

Measured Total Cross Sections

Weak Neutral Current

★ Neutrinos also interact via the Neutral Current. First observed in the Gargamelle bubble chamber in 1973. Interaction of muon neutrinos produce a final state muon

★ Cannot be due to W exchange - first evidence for Z boson

Summary

- ★ Derived neutrino/anti-neutrino quark/anti-quark weak charged current (CC) interaction cross sections
- Neutrino nucleon scattering yields extra information about parton distributions functions:
 - v couples to d and \overline{u} ; \overline{v} couples to u and \overline{d}
 - investigate flavour content of nucleon
 - can measure anti-quark content of nucleon $V\overline{q}$ suppressed by factor $(1-y)^2$ compared with Vq
 - $\overline{V}q$ suppressed by factor $(1-y)^2$ compared with $\overline{V}\overline{q}$
- ★ Further aspects of neutrino deep-inelastic scattering (expressed in general structure functions) are covered in Appendix II
- **★** Finally observe that neutrinos interact via weak neutral currents (NC)

Prof. M.A. Thomson

Michaelmas 2009

331

Appendix I

•For the adjoint spinors $\overline{u} = u^{\dagger} \gamma^0$ consider

$$\overline{\frac{1}{2}(1-\gamma^5)u} = [\frac{1}{2}(1-\gamma^5)u]^{\dagger}\gamma^0 = u^{\dagger}\frac{1}{2}(1-\gamma^5)\gamma^0 = u^{\dagger}\gamma^0\frac{1}{2}(1+\gamma^5) = \overline{u}\frac{1}{2}(1+\gamma^5)$$
$$\frac{1}{2}(1-\gamma^5)u_{\uparrow} = 0 \quad \Longrightarrow \quad \overline{u}\frac{1}{2}(1+\gamma^5) = 0$$

Using the fact that γ^5 and γ^{μ} anti-commute can rewrite ME:

$$M_{fi} = \frac{g_W^2}{2m_W^2} g_{\mu\nu} \left[\overline{u}(p_3) \frac{1}{2} (1+\gamma^5) \gamma^{\mu} u(p_1) \right] \left[\overline{u}(p_4) \frac{1}{2} (1+\gamma^5) \gamma^{\nu} u(p_2) \right]$$
$$\implies M_{fi} = 0 \quad \text{for} \quad \overline{u}_{\uparrow}(p_3) \text{ and } \overline{u}_{\uparrow}(p_4)$$

Appendix II: Deep-Inelastic Neutrino Scattering

Two steps:

- First write down most general cross section in terms of structure functions
- Then evaluate expressions in the guark-parton model

QED Revisited

★In the limit $s \gg M^2$ the most general electro-magnetic deep-inelastic cross section (from single photon exchange) can be written (Eq. 2 of handout 6)

$$\frac{d^2 \sigma_{e^{\pm}p}}{dx dQ^2} = \frac{4\pi\alpha^2}{Q^4} \left[(1-y) \frac{F_2(x,Q^2)}{x} + y^2 F_1(x,Q^2) \right]$$

- · For neutrino scattering typically measure the energy of the produced muon $E_{\mu} = E_{\nu}(1-y)$ and differential cross-sections expressed in terms of dxdy
- Using $Q^2 = (s M^2)xy \approx sxy \implies \frac{d^2\sigma}{dxdy} = \left|\frac{dQ^2}{dy}\right|\frac{d^2\sigma}{dxdQ^2} = sx\frac{d^2\sigma}{dxdQ^2}$

Prof. M.A. Thomson

Michaelmas 2009

• In the limit $s \gg M^2$ the general Electro-magnetic DIS cross section can be written $\frac{\mathrm{d}^2 \sigma^{e^{\pm}p}}{\mathrm{d}x\mathrm{d}y} = \frac{4\pi\alpha^2 s}{Q^4} \left[(1-y)F_2(x,Q^2) + y^2 x F_1(x,Q^2) \right]$

•NOTE: This is the most general Lorentz Invariant parity conserving expression **★**For neutrino DIS parity is violated and the general expression includes an additional term to allow for parity violation. New structure function $F_3(x,Q^2)$

$$\mathbf{v}_{\mu}p \to \mu^{-}X \quad \frac{\mathrm{d}^{2}\sigma^{\nu p}}{\mathrm{d}x\mathrm{d}y} = \frac{G_{\mathrm{F}}^{2s}}{2\pi} \left[(1-y)F_{2}^{\nu p}(x,Q^{2}) + y^{2}xF_{1}^{\nu p}(x,Q^{2}) + y\left(1-\frac{y}{2}\right)xF_{3}^{\nu p}(x,Q^{2}) \right]$$

•For anti-neutrino scattering new structure function enters with opposite sign

$$\overline{\nu}_{\mu}p \longrightarrow \mu^{+}X \quad \frac{\mathrm{d}^{2}\sigma^{\overline{\nu}p}}{\mathrm{d}x\mathrm{d}y} = \frac{G_{\mathrm{F}}^{2s}}{2\pi} \left[(1-y)F_{2}^{\overline{\nu}p}(x,Q^{2}) + y^{2}xF_{1}^{\overline{\nu}p}(x,Q^{2}) - y\left(1-\frac{y}{2}\right)xF_{3}^{\overline{\nu}p}(x,Q^{2}) \right]$$

Similarly for neutrino-neutron scattering

$$\begin{array}{c} \mathbf{v}_{\mu}n \to \mu^{-}X \\ \hline \frac{\mathrm{d}^{2}\sigma^{\nu n}}{\mathrm{d}x\mathrm{d}y} = \frac{G_{\mathrm{F}}^{2}s}{2\pi} \left[(1-y)F_{2}^{\nu n}(x,Q^{2}) + y^{2}xF_{1}^{\nu n}(x,Q^{2}) + y\left(1-\frac{y}{2}\right)xF_{3}^{\nu n}(x,Q^{2}) \right] \\ \hline \overline{\mathbf{v}}_{\mu}n \to \mu^{+}X \\ \hline \frac{\mathrm{d}^{2}\sigma^{\overline{\nu}n}}{\mathrm{d}x\mathrm{d}y} = \frac{G_{\mathrm{F}}^{2}s}{2\pi} \left[(1-y)F_{2}^{\overline{\nu}n}(x,Q^{2}) + y^{2}xF_{1}^{\overline{\nu}n}(x,Q^{2}) - y\left(1-\frac{y}{2}\right)xF_{3}^{\overline{\nu}n}(x,Q^{2}) \right] \end{array}$$

Prof. M.A. Thomson

333

Neutrino Interaction Structure Functions

* In terms of the parton distribution functions we found (2) :

$$\frac{d^2 \sigma^{vp}}{dxdy} = \frac{G_F^2}{\pi} sx \left[d(x) + (1-y)^2 \overline{u}(x) \right]$$
• Compare coefficients of y with the general Lorentz Invariant form (p.321) and assume Bjorken scaling, i.e. $F(x, Q^2) \rightarrow F(x)$

$$\frac{d^2 \sigma^{vp}}{dxdy} = \frac{G_F^2 s}{2\pi} \left[(1-y) F_2^{vp}(x) + y^2 x F_1^{vp}(x) + y \left(1 - \frac{y}{2}\right) x F_3^{vp}(x) \right]$$
• Re-writing (2) $\frac{d^2 \sigma^{vp}}{dxdy} = \frac{G_F^2}{2\pi} s \left[2xd(x) + 2x\overline{u}(x) - 4xy\overline{u}(x) + 2xy^2\overline{u}(x) \right]$
and equating powers of y

$$2xd + 2x\overline{u} = F_2 - 4x\overline{u} = -F_2 + xF_3 - 2\overline{u} = F_1 - xF_3/2$$
gives: $F_2^{vp} = 2xF_1^{vp} = 2x[d(x) + \overline{u}(x)] - xF_3^{vp} = 2x[d(x) - \overline{u}(x)]$

<u>NOTE</u>: again we get the Callan-Gross relation $F_2 = 2xF_1$

No surprise, underlying process is scattering from point-like spin-1/2 quarks

★Substituting back in to expression for differential cross section:

$$\frac{d^2 \sigma^{\nu p}}{dxdy} = \frac{G_F^2 s}{2\pi} \left[\left(1 - y + \frac{y^2}{2} \right) F_2^{\nu p}(x) + y \left(1 - \frac{y}{2} \right) x F_3^{\nu p}(x) \right]$$

- **★**Experimentally measure F_2 and F_3 from y distributions at fixed x
 - Different y dependencies (from different rest frame angular distributions) allow contributions from the two structure functions to be measured

335

Prof. M.A. Thomson

Michaelmas 2009

337

Measurements of $F_2(x)$ and $F_3(x)$

Valence Contribution

