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1 Unusual saddles

Stationary points of functions of two variables are often called saddle points if they are neither maxima
nor minima. Contours through such saddles frequently take the form of two lines crossing at some (non-
zero) angle, at least locally, however this is not always the case. Four exampled of unusual saddles are
shown in Figure 1.
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Figure 1: Unusual saddles.

2 Examples of initial value problems with non-unique solutions

Consider the initial value problem

dy

dx
= 3y2/3 with y(0) = 0 (1)

for a real function y(x) of a non-negative real variable x ≥ 0. One may show by direct substitution
that this initial value problem has infinitely many solutions which can all be written in terms of a real
parameter a ≥ 0 as follows:

y(x) =

{
0 x ≤ a,

(x− a)3 x ≥ a.
(2)

That there can be infinitely many solutions to a simple initial value problem can appear surprising the
first time one sees that it can happen!

One could demonstrate that (2) solves (1) by simply substituting the former into the latter. A more
discursive construction of the solution is provided in section 2 for those who might be interested. Skip if
not interested!

A discursive derivation of (2)

By inspection we can see that (1) has at least one solution, namely:

y(x) = 0 for all x.

Are there any other solutions? Let us try solving the differential equation in a region in which y(x) ̸= 0.
In such a region we can rewrite it as

1

3
y−2/3 dy

dx
= 1
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and so can say

1
3

∫ x

x0

y−2/3 dy

dx
dx =

∫ x

x0

dx

=⇒ 1
3

∫ y

y0

y−2/3dy = x− x0

=⇒
[
y1/3

]y
y0

= x− x0

=⇒ y1/3 − y0
1/3 = x− x0. (3)

Although we derived (3) under the assumption that y ̸= 0, it is tempting to investigate whether (3) can
be used even when y = 0. In that spirit, if we apply the boundary condition of (1) to (3) (i.e. if we set
x0 and y0 to 0) we find:

y1/3 = x

which, since x and y are real, is the same as

y = x3. (4)

Quite clearly (4) satisfies the initial value in (1). We may also show that (4) satisfies the differential
equation in (1) since

(4) =⇒ dy

dx
= 3x2

and so

((4) and x ≥ 0) =⇒ dy

dx
= y3/2

in which the last step has made use of the non-negative assumption about x which featured in the
statement of the problem.

Thus far we have found two solutions of (1), namely:

y(x) =

{
y1(x) ≡ 0

y2(x) ≡ x3

however we are not done. We generate even more solutions to (1) by sticking together solutions of the
form y1(x) to suitably translated solutions of the form y2(x). Specifically, the following is a solution of
(1) for any a ≥ 0:

y(x) =

{
0 x ≤ a,

(x− a)3 x ≥ a.

3 What orthogonal matrices are not

The matrix

M =

(
cosh 7 i sinh 7

−i sinh 7 cosh 7

)
(5)

is not orthogonal, even though it satisfies MMT = MTM = 1. It is, however, a Lester Matrix, since
Lester Matrices are those matrices M which satisfy MMT = MTM = 1. Orthogonal Matrices are
required to be real, whereas Lester Matrices are not. Orthogonal Matrices are therefore the real sub-set
subset of the Lester Matrices.

4 Why you should be careful with your complex number ma-
nipulations

Complex numbers are well founded, and can always be manipulated safely. However, it is easy to be
sloppy when manipulating them. For example, there is an error in the following argument but it is hard

3



to spot:

1 =
√
1 hopefully this is obvious

=
√
(−1)(−1) since 1 = (−1)(−1)

=
√
−1

√
−1 since (ab)c = acbc

= ii by definition of i
= i2 since aa = a2

= −1 since i is the square root of −1

(6)

Here is a variation on the same bad argument which avoids use of any explicit “i”s:

1 =
√
1 hopefully this is obvious

=
√

(−1)(−1) since 1 = (−1)(−1)
=

√
−1

√
−1 since (ab)c = acbc

= (
√
−1)2 since aa = a2

= ((−1)
1
2 )2 since

√
a = a

1
2

= (−1)1 since (ab)c = abc

= −1 since a1 = a for all a.

(7)

5 Why the difference between conditional- and absolute-convergence
is important

Add up all the numbers in the table below and what do you get? It appears to be “0” or “-2” depending
on whether you add up the column totals or the row totals! Why?

Row and column totals −1 − 1
2 − 1

4 − 1
8 − 1

16 . . . column totals sum to “-2”
0 −1 1

2
1
4

1
8

1
16 . . .

0 0 −1 1
2

1
4

1
8 . . .

0 0 0 −1 1
2

1
4 . . .

0 0 0 0 −1 1
2 . . .

...
...

...
...

...
...

. . .

row totals sum to “0”

6 Why you should be careful when changing the order of inte-
gration

Define f(x, y) (which is well behaved for all real values of x and y) by

f(x, y) =
(x− y)

((x− y)2 + 1)
2 . (8)

You should be able to satisfy yourself that∫ ∞

y=0

∫ ∞

x=0

f(x, y)dxdy = +
π

4

yet ∫ ∞

x=0

∫ ∞

y=0

f(x, y)dydx = −π

4
.

Furthermore, since the function exp(−x2 − y2) integrates over the same region to π
4 irrespective of which

order of integration is used, the function g(x, y) = f(x, y) + exp(−x2 − y2) has therefore the property
that: ∫ ∞

y=0

∫ ∞

x=0

g(x, y)dxdy =
π

2

and ∫ ∞

x=0

∫ ∞

y=0

g(x, y)dydx = 0.
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For a different interesting example, try

h(x, y) =

{
e−(y−x) if y > x

−2e2(y−x) otherwise,

and compare ∫ ∞

y=0

∫ ∞

x=0

h(x, y)dxdy =

∫ ∞

y=0

(∫ y

x=0

h(x, y)dx+

∫ ∞

x=y

h(x, y)dx

)
dy

=

∫ ∞

y=0

(∫ y

x=0

e−(y−x)dx+

∫ ∞

x=y

−2e2(y−x)dx

)
dy

=

∫ ∞

y=0

([
e−(y−x)

]y
x=0

+
[
e2(y−x)

]∞
x=y

)
dy

=

∫ ∞

y=0

((
1− e−y

)
+ (0− 1)

)
dy

=

∫ ∞

y=0

−e−ydy

=
[
e−y
]∞
y=0

= 0− 1

= −1

with ∫ ∞

x=0

∫ ∞

y=0

h(x, y)dydx =

∫ ∞

x=0

(∫ x

y=0

h(x, y)dy +

∫ ∞

y=x

h(x, y)dy

)
dx

=

∫ ∞

x=0

(∫ x

y=0

−2e2(y−x)dy +

∫ ∞

y=x

e−(y−x)dy

)
dx

=

∫ ∞

x=0

([
−e2(y−x)

]x
y=0

+
[
−e−(y−x)

]∞
y=x

)
dx

=

∫ ∞

x=0

((
−1− (−e−2x)

)
+ (0− (−1))

)
dx

=

∫ ∞

x=0

e−2xdx

=

[
−1

2
e−2x

]∞
x=0

= 0− (−1

2
)

=
1

2
.

Determining the reason for the discrepancy is left as an excercise for the reader. [Hint: consider
convergence versus absolute convergence for series.]

7 Second derivatives need not commute (trivial example)

If x and y are expressed in terms of r and θ as follows

x = r cos θ (9)

y = r sin θ (10)

then note that

∂2y

∂x|y∂θ|r
̸= ∂2y

∂θ|r∂x|y
(11)
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(i.e. note that second derivatives need not commute) since

∂2y

∂x|y∂θ|r
≡ ∂

∂x|y

(
∂

∂θ|r
(y)

)
(12)

=
∂

∂x|y

(
∂

∂θ|r
(r sin θ)

)
(13)

=
∂

∂x|y
(r cos θ) (14)

=
∂

∂x|y
(x) (15)

= 1 (16)

while

∂2y

∂θ|r∂x|y
≡ ∂

∂θ|r

(
∂

∂x|y
(y)

)
(17)

=
∂

∂θ|r
(0) (18)

= 0. (19)

8 Second derivatives need not commute (second sort of exam-
ple)

In this example, we illustrate non-commuting where the the non-commutation comes only from ‘the thing
being held constant’. This time we show that

∂2x

∂r|θ∂r|y
̸= ∂2x

∂r|y∂r|θ
.

We prove the above by noting that:

∂2x

∂r|θ∂r|y
=

∂

∂r|θ

(
∂

∂r|y
(x)

)
(20)

=
∂

∂r|θ

(
∂

∂r|y
(
√

r2 − y2)

)
(21)

=
∂

∂r|θ

(
r√

r2 − y2

)
(22)

=
∂

∂r|θ

( r
x

)
(23)

=
∂

∂r|θ

( r

r cos θ

)
(24)

=
∂

∂r|θ

(
1

cos θ

)
(25)

= 0 (26)
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while

∂2x

∂r|y∂r|θ
=

∂

∂r|y

(
∂

∂r|θ
(x)

)
(27)

=
∂

∂r|y

(
∂

∂r|θ
(r cos θ)

)
(28)

=
∂

∂r|y
(cos θ) (29)

=
∂

∂r|y

(
r cos θ

r

)
(30)

=
∂

∂r|y

(x
r

)
(31)

=
∂

∂r|y

(√
r2 − y2

r

)
(32)

=

r

(
r√

r2−y2

)
−
√
r2 − y2

r2
(33)

=

r2√
r2−y2

− r2−y2√
r2−y2

r2
(34)

=
y2

r2
√
r2 − y2

(35)

=
y2

r2x
(36)

=
sin2 θ

r cos θ
. (37)

9 Second derivatives need not commute (totally different sort
of example)

The everywhere-smooth and everywhere-continuous function f(x, y) defined by

f(x, y) =

{
xy(x2−y2)

x2+y2 if (x, y) ̸= (0, 0)

0 otherwise,

has the following everywhere-continuous first derivatives:

∂f

∂x|y
=

{
y(x4+4x2y2−y4)

(x2+y2)2 if (x, y) ̸= (0, 0)

0 otherwise,

∂f

∂y|x
=

{
x(x4−4x2y2−y4)

(x2+y2)2 if (x, y) ̸= (0, 0)

0 otherwise,

and has the following second derivatives valid away from the origin:

∂2f

∂x|y∂y|x
=

∂2f

∂y|x∂x|y
= A(x, y) ≡ (x2 − y2)(x4 + 10x2y2 + y4)

(x2 + y2)3
.

But A(x, y) is itself not continuous at the origin because A(x ̸= 0, y = 0) = +1 and A(x = 0, y ̸= 0) = −1.
When calculating the second derivatives from first principles one finds that

∂2f

∂x∂y

∣∣∣∣
(0,0)

= +1 and
∂2f

∂y∂x

∣∣∣∣
(0,0)

= −1.

Note that this means that the function g defined by g = f + xy will satisfy:

∂2g

∂x∂y

∣∣∣∣
(0,0)

= 2 and
∂2g

∂y∂x

∣∣∣∣
(0,0)

= 0.
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10 Why you should not extrapolate based on the first few terms
of a sequence

∫ ∞

−∞

sinx

x
dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

·
sin x

7
x
7

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

·
sin x

7
x
7

·
sin x

9
x
9

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

·
sin x

7
x
7

·
sin x

9
x
9

·
sin x

11
x
11

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

·
sin x

7
x
7

·
sin x

9
x
9

·
sin x

11
x
11

·
sin x

13
x
13

dx = π∫ ∞

−∞

sinx

x
·
sin x

3
x
3

·
sin x

5
x
5

·
sin x

7
x
7

·
sin x

9
x
9

·
sin x

11
x
11

·
sin x

13
x
13

·
sin x

15
x
15

dx =
467807924713440738696537864469

467807924720320453655260875000
π

All equalities above are exact. Note that the last fraction is approximately

0.9999999999852937186π.

11 Why you should be careful with Lagrange Multipliers

By inspection, we can see that for any finite value of the fixed parameter m, the extremum of the function

f(x, y, z) = x2 + y2 + z2 +mx

subject to the constraint
x2 + y2 = 0

8



is just zero, since the constraint simply implies that x = y = 0 and so f reduces to fc = z2 which has
a global minimum of zero at x = y = z = 0. Note that an “unthinking” application of the method of
Lagrange multipliers fails: If you define

L = x2 + y2 + z2 +mx− λ(x2 + y2)

then the Euler-Lagrange equation corresponding to x is:

2x+m− 2λx = 0

and it is clear that this equation is NOT satisfied by the desired solution x = y = z = 0 (unless we
happen to be in the special case where m = 0).1 This is due to the gradient of the constraint function
being a null vector at the place where the constraint is satisfied. It is not clear to me how in general one
avoids getting caught in this trap when the maths is more obscure (as it frequently is in real problems).
Is it sufficient to simply take grad of any constraint and check for inequality with the null vector at all
places satisfying the constraint? Is it acceptable to perturb the constraint from null - eg by replacing the
constraint with x2 + y2 = ϵ2 ?

12 Cauchy Riemann Equations and Wirtinger Derivatives

12.1 Wirtinger derivatives

Physicists use ∂
∂z and ∂

∂z̄ quite a lot, but often don’t say how these seeminly innocent derivatives are
defined. Often people seem to assume that they can be interpreted as oridinary partial derivatives in
which “the other” variable is kept constant: vis ∂

∂z

∣∣
z̄
and ∂

∂z̄

∣∣
z
. However, after some thought one notices

that it is not possible to vary z while keeping z̄ constant, or to vary z̄ while keeping z constant. If one
changes, then so does the other. Is this a problem? It need not be ... after all, if f = x+y is considered to
define f as a function of two variables x and y, and if we later discover that y itself is a function of x, such
as y = x2, this later knowledge (which tells us that x can’t really be varied without varying y) doesn’t

actually prevent us still considering things like ∂f
∂x

∣∣∣
y
. Such derivatives intentionally blind themselves to

any functional depenence that y might have – asking us to look at f explicitely as a function of just x
and y, regardless of the internal workings of either x or y.

Nonetheless, even though one can view ∂
∂z as being a sloppy notation for ∂

∂z

∣∣
z̄
, many people still find

such an approach disturbing. Persons in that camp can sometimes find it helpful to see an alternative
approach (Wirtinger) which is to define these derivatives as follows:

∂

∂z
≡ 1

2

(
∂

∂x

∣∣∣∣
y

− i
∂

∂y

∣∣∣∣
x

)
, (38)

∂

∂z̄
≡ 1

2

(
∂

∂x

∣∣∣∣
y

+ i
∂

∂y

∣∣∣∣
x

)
(39)

acting on the space of functions on the complex plane {z | z = x+ iy}. Among the useful consequences
of this definition are:

• These operators really are allowed to be called “derivatives” (or “derivations” by mathematicians)

as they satisfy the product rule: ∂(fg)
∂z = f ∂g

∂z + ∂f
∂z g and ∂(fg)

∂z̄ = f ∂g
∂z̄ + ∂f

∂z̄ g,

• ∂
∂z̄ (z

n) = ∂
∂z̄ ((x+ iy)n) = 1

2n(x + iy)n−1(1 + i2) = 0 and thus ∂f(z)
∂z̄ = 0 for funtions that have a

Taylor or Laurent Series in powers of z,

• ∂
∂z (z

n) = ∂
∂z ((x+ iy)n) = 1

2n(x+ iy)n−1(1− i2) = nzn−1

Taking the above properties together, one sees that one really can ‘treat’ the derivatives “ ∂
∂z and ∂

∂z̄”

almost ‘as if’ they really did mean “ ∂
∂z

∣∣
z̄
and ∂

∂z̄

∣∣
z
”, even though strictly this notation is not self consis-

tent!

1Note, however, that this argument presupposes λ is well defined. If the condition is perturbed my a small amount ϵ (see
later) then λ may be seen to grow as an inverse power of ϵ – in effect saying that λ needs to go to infinity as the constraint
becomes un-perturbed.
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12.2 Extension to fields

In text books on Quantum Field Theory one often sees similar methods being applied to allow a complex
scalar field ϕ, its complex conjugate ϕ̄, its time derivative ϕ̇ and the time derivative of its complex

conjugate ˙̄ϕ, to appear to be treated as independent quantities in lagrangians of the form L(ϕ, ϕ̄, ϕ̇, ˙̄ϕ).
As before, that view point is not wrong, but if you wish to do so, you can alternatively take the view
that the “actual” independent degrees of freedom are the fields u(x, t), u̇(x, t), v(x, t) and v̇(x, t) where
ϕ = u+ iv, and where the Wirtinger derivatives are being defined as:

∂

∂ϕ
≡ 1

2

(
∂

∂u

∣∣∣∣
v,u̇,v̇

− i
∂

∂v

∣∣∣∣
u,u̇,v̇

)
, (40)

∂

∂ϕ̄
≡ 1

2

(
∂

∂u

∣∣∣∣
v,u̇,v̇

+ i
∂

∂v

∣∣∣∣
u,u̇,v̇

)
, (41)

∂

∂ϕ̇
≡ 1

2

(
∂

∂u̇

∣∣∣∣
v̇,u,v

− i
∂

∂v̇

∣∣∣∣
u̇,u,v

)
, (42)

∂

∂ ˙̄ϕ
≡ 1

2

(
∂

∂u̇

∣∣∣∣
v̇,u,v

+ i
∂

∂v̇

∣∣∣∣
u̇,u,v

)
. (43)

As before, these definitions may safely be be used “as if” they were equivalent to derivatives at “constant”

values of the other “independent” field components, vis ∂
∂ϕ ≡ ∂

∂ϕ

∣∣∣
ϕ̄,ϕ̇, ˙̄ϕ

, etc. Note that none of these

definitions would be much use if things like the E-L equations did not retain a simple form in the new
deriviatives. Fortunately they do. Inverting the relations above, we see that

∂L
∂u

∣∣∣∣
v,u̇,v̇

=
d

dt

(
∂L
∂u̇

∣∣∣∣
v̇,u,v

)

becomes
∂L
∂ϕ

+
∂L
∂ϕ̄

=
d

dt

(
∂L
∂ϕ̇

+
∂L
∂ ˙̄ϕ

)
(44)

and
∂L
∂v

∣∣∣∣
u,u̇,v̇

=
d

dt

(
∂L
∂v̇

∣∣∣∣
u̇,u,v

)
becomes

i

(
∂L
∂ϕ

− ∂L
∂ϕ̄

)
= i

d

dt

(
∂L
∂ϕ̇

− ∂L
∂ ˙̄ϕ

)
(45)

and so taking (44) and (45) together we recover:

∂L
∂ϕ

=
d

dt

(
∂L
∂ϕ̇

)
and (46)

∂L
∂ϕ̄

=
d

dt

(
∂L
∂ ˙̄ϕ

)
. (47)

Note that if L is real, then these two equations are not independent (one being the complex conjugate of
the other) and so in this case it is sufficient to use just one of them.
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12.3 Cauchy Riemann

We are now able to derive the Cauchy Riemann equations for functions meeting the conditions above:

0 =
∂f(z)

∂z̄
(provided f(z) is of the appropriate type!) (48)

=
∂(u(x, y) + iv(x, y))

∂z̄
(49)

=
1

2

(
∂

∂x

∣∣∣∣
y

+ i
∂

∂y

∣∣∣∣
x

)
(u(x, y) + iv(x, y)) (50)

=
1

2

(
∂u

∂x

∣∣∣∣
y

+ i
∂u

∂y

∣∣∣∣
x

+ i
∂v

∂x

∣∣∣∣
y

+ i2
∂v

∂y

∣∣∣∣
x

)
(51)

=
1

2

(
∂u

∂x

∣∣∣∣
y

− ∂v

∂y

∣∣∣∣
x

)
+

i

2

(
∂u

∂y

∣∣∣∣
x

+
∂v

∂x

∣∣∣∣
y

)
(52)

and therefore, since u, v, x and y are all real, we must have

∂u

∂x

∣∣∣∣
y

= +
∂v

∂y

∣∣∣∣
x

and
∂u

∂y

∣∣∣∣
x

= − ∂v

∂x

∣∣∣∣
y

.

13 L’Hopital’s rule

If limx→c f(x) = limx→c g(x) = a and [ a = 0 or a = ±∞ ] and limx→c
f ′(x)
g′(x) exists, then limx→c

f(x)
g(x) =

limx→c
f ′(x)
g′(x) .

Your attention is drawn to the last precondition in the statement above. It is important, as the
example f(x) = x+ sinx and g(x) = x with x → ∞ illustrates.

14 SU(3) multiplet multiplicites

If p and q are the number of gaps across two adjacent edges of the multiplet weight diagram, then it is
called the (p, q)-multiplet and contains 1

2 (p+ 1)(q + 1)(p+ q + 2) states within it. N.B., this number of
states can also be written as 1

2nanb(na + nb) where na and nb are the number of states on each of two
adjacent edges.

Multiplicity is not a good way of labelling multiplets, as different multiplets can have the same
multiplicity. For example.

There are 15 states in both the (2, 1) and the (4, 0) multiplets.
There are 105 states in both the (13, 0) and the (6, 2) multiplets.
There are 120 states in each of the (9, 1), (14, 0) and (5, 3) multiplets.
840 and 960 can also be realised in three different ways (find them!) and there are many other ways

of realising multiplicities in two different ways. I know of no multiplicity that can be realised in four or
more ways.

15 Playing the Cello (in equal temperament)

N =

⌊
8x

a
+

1

2

⌋
− 3 (3 for the key of C major) (53)

n = N mod 7 (0=tonic, 6=sub-tonic) (54)

σ = ⌊N/7⌋ (which octave we are in) (55)

f = (130.8 Hz× 2σ) {1, 2 2
12 , 2

4
12 , 2

5
12 , 2

7
12 , 2

9
12 , 2

11
12 }[n] (note frequency) (56)

L =
1

2f

√
T

ρ
(T=tension, ρ=mass per unit length) (57)
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16 Another way of doing one of the sums from the Fourier part
of the course

To perform the sum

S =

∞∑
n=1

1

1 + n2

one can try to create a function of a complex number with poles at the integers whose residues are equal
to the terms being summed, so that the sum can be converted to a contour integral. [ Thanks to Herschel
Chawdhry for suggesting this approach. ] We could start by noting that the function

f(z) =
π cotπz

1 + z2

has simple poles at z = ±i and z = n for integer n. We will need to know the residues rz of f(z) at each
of those poles. From the periodicity of cot, the residies of cotπz at each of the positions z = n will be
identical. From the Taylor series:

π cotπz = π
1 +O((πz)2)

πz +O((πz)3)
=

1

z
+O(1)

we see that the residue of π cotπz at the origin, and thus also at each of the positions z = n, is 1. The
residues of f(z) at these integer positions are therefore:

rn = 1 · 1

1 + n2
=

1

1 + n2

which sum over all n to 2S + 1. The residues at z = ±i are best seen by factorising f(z)

f(z) = (π cotπz)
1

z − i

1

z + i

and thereby noting that

r±i =
π cotπi

2i
= −π cothπ

2
.

We are now in a position to state by Cauchy’s Theorem that:∫
Γ

f(z)dz = 2πi {(2S + 1)− (π cothπ)}

where first quantity in round brackets is the sum of the poles on the real axis, the second is the sum
of the residues of the other two poles, and Γ is an infinitely big version of the curve shown in the plot
below.2

2Technically, we ought to use a sequence of ever larger but nonetheless finite curves, and therefore should work with
finite sums associated with finite subsets of the poles on the real line. We will leave those details as an exercise for the
reader.
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ℜ(z)

ℑ(z)

−4 −3 −2 −1 1 2 3 40

+i

−i

The curve Γ has two vertical sections and two horizontal sections. The integrals on the two horizontal
parts of Γ go to zero as H goes to infinity since

cot(x+ iy) =
sin 2x− i sinh 2y

cosh 2y − cos 2x

and so
lim

y→±∞
cot(x+ iy) = ∓i.

As this is constant and bounded, the 1
1+z2 part of f(x) will ensure that the integral along the top and

bottom of Γ will go to zero as the box size increases if the aspect ratio of the box remains approximately
unity. On the vertical parts of Γ the complex number z takes values where its real part is half-integer.
Taking z = n+ 1

2 + iy yields cotπz = −i tanhπy which is bounded between −1 and +1. As this also is
bounded, the remaining 1

1+z2 part of f(x) will ensure that the integral along the vertical part of Γ will go
to zero as the box size increases if the aspect ratio of the box remains approximately one. Accordingly,
we can see that as the curve Γ grows in size, the integral around it will tend to zero. In other words, we
may state:

0 = 2πi {(2S + 1)− (π cothπ)}
which if solved for S gives

S =

∞∑
n=1

1

1 + n2
=

1

2
(π cothπ − 1) .

17 Inverses of Lorentz transformations in tensor/component form
require sideways index movements.

If primed coordinates are related to unprimed coordinates via a Lorentz Transformation in the following
way:

x′µ = Λµ
νx

ν (58)

then

x′µy′ν = xµyν ∀x, y (59)

and the true-by-definition identity:

δµν = (Λ−1)µσΛ
σ
ν (60)
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are together sufficient to gurantee that:

(Λ−1)µν = (Λ) µ
ν (61)

or equivalently that

(Λ−1) µ
ν = (Λ)µν . (62)

Another way of describing the last two results is that: a Lorentz transformation written with
indices can be inverted by sliding all its indices sideways ↔. A trivial consequence of the above
result is that all/any of the following are also identities:

δµν = Λ µ
σ Λσ

ν (note summation in first slot (row)), (63)

δµν = Λµ
σΛ

σ
ν (note summation in second slot (column)). (64)

Students looking for matrix views of the Lorentz transformations are reminded always to take the left-
most index as a row index and the right-most index as a column index, regardless of raised/lowered status
and regardless of the index label name.

It is tempting to think of the ‘sideways index sliding’ as being a transposing operation (and in some
sense it sort of is!). However, that idea is also dangerous/problematic/confusing since it is well kown that
the inverse of this 1D Lorentz boost:

Λ =

(
γ βγ
βγ γ

)
(65)

is this:

Λ−1 =

(
γ −βγ

−βγ γ

)
(66)

which is clearly not the same thing as ΛT .
The reason for the conflict is that ‘sideways index sliding’ is not just transposing (i.e. interchaging

rows and columns), it is transposing coupled to a pair of index raising and lowering operations. The
latter are necessary because the tensor which is the end result doesn’t ‘fit into the old tensor’s body’.

More concretely: one could legitimately call the following operation ‘transposing’:

Tµν → Tνµ (67)

since both start and end take the form T■■. One could also legitimately call the following operation
‘transposing’

Tµν → T νµ (68)

since start and endpoints are both of the form T■■. However: when we perform the operation

Tµ
ν → T µ

ν (69)

we are moving from T■
■ to T ■

■ , in addition to changing labels µ and ν, and it is this extra raising and
lowering that changes change the sign of β in the 1D example given in (66). This is why inverting a
Lorentz transformation is about more than ‘just’ transposing.
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